NVILA-Lite-2B-hf-preview / auto_processor.py
Ligeng-Zhu's picture
Upload files with `vila-upload`.
eb202aa verified
raw
history blame
10.2 kB
import os
import os.path as osp
from collections import defaultdict
from typing import List, Union
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoProcessor, AutoTokenizer
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from .constants import DEFAULT_IMAGE_TOKEN, MEDIA_TOKENS
from .media import Image, Video, extract_media
from .mm_utils import process_image, process_images
from .tokenizer_utils import tokenize_conversation
class VILAProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class VILAProcessor(ProcessorMixin):
# attributes = ["image_processor", "tokenizer"]
attributes = []
# valid_kwargs = ["chat_template"]
valid_kwargs = []
# image_processor_class = "VILAImageProcessor"
# tokenizer_class = ("VILATokenizer", "VILATokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, config=None, **kwargs):
# self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
# self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
self.image_token = MEDIA_TOKENS["image"]
self.video_token = MEDIA_TOKENS["video"]
self.config = config
self.image_processor = image_processor
self.tokenizer = tokenizer
super().__init__(image_processor, tokenizer, chat_template=chat_template)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
if os.path.isdir(pretrained_model_name_or_path):
pretrained_model_name_or_path = pretrained_model_name_or_path
else:
print(f"pretrained_model_name_or_path {pretrained_model_name_or_path} is not a directory, downloading")
from huggingface_hub import HfApi, snapshot_download
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)
image_processor = AutoImageProcessor.from_pretrained(
osp.join(pretrained_model_name_or_path, "vision_tower"), trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
osp.join(pretrained_model_name_or_path, "llm"), trust_remote_code=True
)
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
return cls(image_processor=image_processor, tokenizer=tokenizer, config=config)
def __repr__(self):
return (
f"VILAProcessor(image_processor={self.image_processor}, tokenizer={self.tokenizer}, config={self.config})"
)
def __call__(
self,
conversation,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[VILAProcessorKwargs],
) -> BatchFeature:
# TODO: should be merged with llava_arch.py/generate_content()
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
media = extract_media(conversation, self.config)
# Process media
media_config = defaultdict(dict)
for name in media:
if name == "image":
if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
self.config.image_processor = self.image_processor
if self.config.image_aspect_ratio == "dynamic":
images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
conversation[0]["value"] = conversation[0]["value"].replace(
DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
)
else:
if type(self.config.s2_scales) is str:
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
images, block_sizes = process_image(
media["image"][0], self.config, None, enable_dynamic_s2=True
)
images = images.half()
media_config[name]["block_sizes"] = [block_sizes]
else:
images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
media[name] = [image for image in images]
elif name == "video":
media[name] = [
process_images(images, self.vision_tower.image_processor, self.config).half()
for images in media[name]
]
else:
raise ValueError(f"Unsupported media type: {name}")
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
# Set up the generation config
# print(input_ids.shape); print(media); input()
return BatchFeature(data={"input_ids": input_ids, **media})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
def apply_chat_template(self, conversation, add_generation_prompt=True, **kwargs):
vila_conv = []
for chat in conversation:
vila_chat = {"from": "", "value": []}
if chat["role"] == "user":
# user allows to input image and text
vila_chat["from"] = "human"
for content in chat["content"]:
if content["type"] == "image":
vila_chat["value"].append(Image(content["path"]))
elif content["type"] == "text":
vila_chat["value"].append(content["text"])
else:
raise ValueError(f"Unsupported content type: {content['type']}")
elif chat["role"] == "assistant":
vila_chat["from"] = "gpt"
for content in chat["content"]:
assert content["type"] == "text", f"Unsupported content type: {content['type']}"
vila_chat["value"].append(content["text"])
vila_conv.append(vila_chat)
return self(vila_conv)
if __name__ == "__main__":
# gpt style: user, assistant
# vila style: human, gpt
gpt_conv = [
{
"role": "user",
"content": [
{"type": "image", "path": "demo_images/demo_img_1.png"},
{"type": "text", "text": "Describe this image."},
],
}
]
llavaconv = [
{
"from": "human",
"value": [
PIL.Image.open("demo_images/demo_img_1.png"),
"Describe this image.",
],
}
]
processor = AutoProcessor.from_pretrained(output_dir, trust_remote_code=True)
inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
# model = llava.load("Efficient-Large-Model/qwen25_2B_3x3-sft").cuda()
# print(model)
model_path = "NVILA-Lite-2B-hf-preview"
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
# res = model.generate_content(["how are you today?"])
# print(model.config)
# print(model.tokenizer)
# print(res)
# exit(0)
processor = VILAProcessor(
config=model.config,
image_processor=model.vision_tower.image_processor,
tokenizer=model.tokenizer,
)
# TODO: add padding, return_tensors,
inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image])
print("vila conv pass")
inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image])
print("gpt conv pass")
output_ids = model.generate(
input_ids=inputs.input_ids,
media={
"image": inputs.image,
},
media_config={"image": {}},
generation_config=model.generation_config,
max_new_tokens=100,
)
print(output_ids)