Ligeng-Zhu commited on
Commit
3e0c00e
·
verified ·
1 Parent(s): c63d9b6

Upload files with `vila-upload`.

Browse files

Upload conversation.py
Upload media_encoder.py
Upload media.py
Upload utils.py
Upload modeling_vila.py
Upload main.py
Upload constants.py
Upload config.json
Upload configuration_vila.py
Upload builder.py
Upload base_projector.py
Upload trainer_state.json
Upload mm_utils.py
Upload tokenizer_utils.py
Upload siglip_encoder.py
Upload llm/added_tokens.json
Upload llm/generation_config.json
Upload llm/merges.txt
Upload llm/special_tokens_map.json
Upload llm/config.json
Upload llm/vocab.json
Upload llm/tokenizer_config.json
Upload llm/model.safetensors
Upload mm_projector/config.json
Upload mm_projector/model.safetensors
Upload vision_tower/config.json
Upload vision_tower/preprocessor_config.json
Upload vision_tower/model.safetensors

base_projector.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ import re
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
22
+
23
+
24
+ class IdentityMap(nn.Module):
25
+ def __init__(self):
26
+ super().__init__()
27
+
28
+ def forward(self, x, *args, **kwargs):
29
+ return x
30
+
31
+ @property
32
+ def config(self):
33
+ return {"mm_projector_type": "identity"}
34
+
35
+
36
+ class SimpleResBlock(nn.Module):
37
+ def __init__(self, channels):
38
+ super().__init__()
39
+ self.pre_norm = nn.LayerNorm(channels)
40
+
41
+ self.proj = nn.Sequential(nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels))
42
+
43
+ def forward(self, x):
44
+ x = self.pre_norm(x)
45
+ return x + self.proj(x)
46
+
47
+
48
+ class DownSampleBlock(nn.Module):
49
+ def forward(self, x):
50
+ vit_embeds = x
51
+ h = w = int(vit_embeds.shape[1] ** 0.5)
52
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
53
+ vit_embeds = self.flat_square(vit_embeds)
54
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
55
+ return vit_embeds
56
+
57
+ def flat_square(self, x):
58
+ n, w, h, c = x.size()
59
+ if w % 2 == 1:
60
+ x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
61
+ n, w, h, c = x.size()
62
+ if h % 2 == 1:
63
+ x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
64
+ n, w, h, c = x.size()
65
+ x = x.contiguous()
66
+ x = x.view(n, w, int(h / 2), int(c * 2))
67
+ x = x.permute(0, 2, 1, 3).contiguous()
68
+ x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
69
+ x = x.permute(0, 2, 1, 3).contiguous()
70
+ return x
71
+
72
+
73
+ class DownSample2x2BlockFix(nn.Module):
74
+ def forward(self, x):
75
+ vit_embeds = x
76
+ h = w = int(vit_embeds.shape[1] ** 0.5)
77
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
78
+ vit_embeds = flat_square_2x2(vit_embeds)
79
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
80
+ return vit_embeds
81
+
82
+
83
+ def flat_square_2x2(x):
84
+ n, w, h, c = x.size()
85
+ if w % 2 == 1:
86
+ x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
87
+ n, w, h, c = x.size()
88
+ x = x.contiguous()
89
+ if h % 2 == 1:
90
+ x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
91
+ n, w, h, c = x.size()
92
+ x = x.view(n, w, int(h / 2), int(c * 2))
93
+ x = x.permute(0, 2, 1, 3).contiguous()
94
+ x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
95
+ x = x.permute(0, 2, 1, 3).contiguous()
96
+ return x
97
+
98
+
99
+ class DownSample3x3BlockFix(nn.Module):
100
+ def forward(self, x):
101
+ vit_embeds = x
102
+ h = w = int(vit_embeds.shape[1] ** 0.5)
103
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
104
+ vit_embeds = flat_square_3x3(vit_embeds)
105
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
106
+ return vit_embeds
107
+
108
+
109
+ def flat_square_3x3(x):
110
+ n, w, h, c = x.size()
111
+ if w % 3 != 0:
112
+ x = torch.concat([x, torch.zeros((n, 3 - (w % 3), h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
113
+ n, w, h, c = x.size()
114
+ x = x.contiguous()
115
+ if h % 3 != 0:
116
+ x = torch.concat([x, torch.zeros((n, w, 3 - (h % 3), c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
117
+ n, w, h, c = x.size()
118
+ x = x.view(n, w, int(h / 3), int(c * 3))
119
+ x = x.permute(0, 2, 1, 3).contiguous()
120
+ x = x.view(n, int(h / 3), int(w / 3), int(c * 9))
121
+ x = x.permute(0, 2, 1, 3).contiguous()
122
+ return x
123
+
124
+
125
+ class MultimodalProjectorConfig(PretrainedConfig):
126
+ model_type = "v2l_projector"
127
+
128
+ def __init__(self, mm_projector_type: str = None, **kwargs):
129
+ super().__init__()
130
+ self.mm_projector_type = mm_projector_type
131
+
132
+
133
+ class MultimodalProjector(PreTrainedModel):
134
+ config_class = MultimodalProjectorConfig
135
+
136
+ def __init__(self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig):
137
+ super().__init__(mm_projector_cfg)
138
+ mm_projector_type = mm_projector_cfg.mm_projector_type
139
+ self.downsample_rate = 1
140
+ if mm_projector_type == "identity":
141
+ self.layers = IdentityMap()
142
+ elif mm_projector_type == "linear":
143
+ self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
144
+ elif mm_projector_type == "mlp_downsample":
145
+ self.layers = nn.Sequential(
146
+ DownSampleBlock(),
147
+ nn.LayerNorm(config.mm_hidden_size * 4),
148
+ nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
149
+ nn.GELU(),
150
+ nn.Linear(config.hidden_size, config.hidden_size),
151
+ )
152
+ self.downsample_rate = 2
153
+ elif mm_projector_type == "mlp_downsample_2x2_fix":
154
+ self.layers = nn.Sequential(
155
+ DownSample2x2BlockFix(),
156
+ nn.LayerNorm(config.mm_hidden_size * 4),
157
+ nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
158
+ nn.GELU(),
159
+ nn.Linear(config.hidden_size, config.hidden_size),
160
+ )
161
+ self.downsample_rate = 2
162
+ elif mm_projector_type == "mlp_downsample_3x3_fix":
163
+ self.layers = nn.Sequential(
164
+ DownSample3x3BlockFix(),
165
+ nn.LayerNorm(config.mm_hidden_size * 9),
166
+ nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
167
+ nn.GELU(),
168
+ nn.LayerNorm(config.mm_hidden_size * 3),
169
+ nn.Linear(config.mm_hidden_size * 3, config.hidden_size),
170
+ nn.GELU(),
171
+ nn.Linear(config.hidden_size, config.hidden_size),
172
+ )
173
+ self.downsample_rate = 3
174
+ elif mm_projector_type == "mlp_downsample_3x3_s2":
175
+ self.layers = nn.Sequential(
176
+ DownSample3x3BlockFix(),
177
+ nn.LayerNorm(config.mm_hidden_size * 9),
178
+ nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
179
+ nn.GELU(),
180
+ nn.LayerNorm(config.mm_hidden_size * 3),
181
+ nn.Linear(config.mm_hidden_size * 3, config.mm_hidden_size),
182
+ nn.GELU(),
183
+ nn.LayerNorm(config.mm_hidden_size),
184
+ nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
185
+ nn.GELU(),
186
+ nn.LayerNorm(config.mm_hidden_size // 3),
187
+ nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
188
+ nn.GELU(),
189
+ nn.Linear(config.hidden_size, config.hidden_size),
190
+ )
191
+ elif mm_projector_type == "mlp_downsample_3x3_s2_new":
192
+ self.layers = nn.Sequential(
193
+ DownSample3x3BlockFix(),
194
+ nn.LayerNorm(config.mm_hidden_size * 9),
195
+ nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 4),
196
+ nn.GELU(),
197
+ nn.LayerNorm(config.mm_hidden_size * 4),
198
+ nn.Linear(config.mm_hidden_size * 4, config.mm_hidden_size * 2),
199
+ nn.GELU(),
200
+ nn.LayerNorm(config.mm_hidden_size * 2),
201
+ nn.Linear(config.mm_hidden_size * 2, config.mm_hidden_size),
202
+ nn.GELU(),
203
+ nn.LayerNorm(config.mm_hidden_size),
204
+ nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
205
+ nn.GELU(),
206
+ nn.LayerNorm(config.mm_hidden_size // 3),
207
+ nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
208
+ nn.GELU(),
209
+ nn.Linear(config.hidden_size, config.hidden_size),
210
+ )
211
+ else:
212
+ mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
213
+ if mlp_gelu_match:
214
+ mlp_depth = int(mlp_gelu_match.group(1))
215
+ modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
216
+ for _ in range(1, mlp_depth):
217
+ modules.append(nn.GELU())
218
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
219
+ self.layers = nn.Sequential(*modules)
220
+ else:
221
+ raise ValueError(f"Unknown projector type: {mm_projector_type}")
222
+
223
+ def forward(self, x, *args, **kwargs):
224
+ return self.layers(x)
225
+
226
+
227
+ # AutoConfig.register("v2l_projector", MultimodalProjectorConfig)
228
+ # AutoModel.register(MultimodalProjectorConfig, MultimodalProjector)
builder.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ import math
18
+ import os
19
+ import os.path as osp
20
+ import warnings
21
+ from dataclasses import asdict
22
+ from typing import Any, Dict, List, Optional, Sequence, Tuple
23
+
24
+ import torch
25
+ from huggingface_hub import file_exists, repo_exists
26
+ from huggingface_hub.utils import HFValidationError
27
+ import transformers
28
+ from transformers import (
29
+ AutoConfig,
30
+ AutoModelForCausalLM,
31
+ AutoTokenizer,
32
+ PretrainedConfig,
33
+ PreTrainedModel,
34
+ PreTrainedTokenizer,
35
+ )
36
+ # from .conversation import *
37
+ from .conversation import default_conversation, SeparatorStyle
38
+
39
+ SENTINEL_TOKEN = "<vila/sentinel>"
40
+ MEDIA_TOKENS = {
41
+ "image": "<image>",
42
+ "video": "<vila/video>",
43
+ }
44
+
45
+ # from llava.model.utils import packing
46
+ # from llava.utils.logging import logger
47
+ # from llava.utils.tokenizer import infer_stop_tokens
48
+
49
+ DUMMY_CONVERSATION = [
50
+ {"from": "human", "value": "question"},
51
+ {"from": "gpt", "value": "answer"},
52
+ ] * 10
53
+
54
+ def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
55
+ return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
56
+
57
+ def has_tokenizer(repo_id_or_path: str) -> bool:
58
+ # Check if the tokenizer is in a local directory
59
+ if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
60
+ return True
61
+
62
+ # Check if the tokenizer is in a Hugging Face Hub repo
63
+ try:
64
+ return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json")
65
+ except HFValidationError:
66
+ return False
67
+
68
+ def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
69
+ if not hasattr(tokenizer, "sentinel_token"):
70
+ tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
71
+ tokenizer.sentinel_token = SENTINEL_TOKEN
72
+ tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)
73
+
74
+ def tokenize_conversation_legacy(
75
+ messages: Sequence[Dict[str, str]],
76
+ tokenizer: transformers.PreTrainedTokenizer,
77
+ add_generation_prompt: bool = False,
78
+ overrides: Optional[Dict[str, str]] = None,
79
+ no_system_prompt: bool = False,
80
+ ) -> torch.Tensor:
81
+ conv = default_conversation.copy()
82
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
83
+
84
+ if no_system_prompt:
85
+ conv.system = ""
86
+
87
+ # Skip the first message if it is not from human
88
+ if messages[0]["from"] != "human":
89
+ messages = messages[1:]
90
+
91
+ # Add a generation prompt if needed
92
+ if add_generation_prompt:
93
+ messages.append({"from": "gpt", "value": None})
94
+
95
+ conv.messages = []
96
+ for turn, message in enumerate(messages):
97
+ role = roles[message["from"]]
98
+ assert role == conv.roles[turn % 2]
99
+ if overrides is not None and message["from"] in overrides:
100
+ conv.append_message(role, overrides[message["from"]])
101
+ else:
102
+ conv.append_message(role, message["value"])
103
+
104
+ return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")
105
+
106
+ def tokenize_conversation(
107
+ messages: Sequence[Dict[str, str]],
108
+ tokenizer: transformers.PreTrainedTokenizer,
109
+ add_generation_prompt: bool = False,
110
+ overrides: Optional[Dict[str, str]] = None,
111
+ no_system_prompt: bool = False,
112
+ ) -> torch.Tensor:
113
+ # Normalize the conversation before tokenization
114
+ for message in messages:
115
+ message["value"] = message["value"].strip()
116
+
117
+ if default_conversation.sep_style != SeparatorStyle.AUTO:
118
+ return tokenize_conversation_legacy(
119
+ messages,
120
+ tokenizer,
121
+ add_generation_prompt=add_generation_prompt,
122
+ overrides=overrides,
123
+ no_system_prompt=no_system_prompt,
124
+ )
125
+
126
+ conversation = []
127
+ for m in messages:
128
+ message = {}
129
+ if m["from"] == "human":
130
+ message["role"] = "user"
131
+ elif m["from"] == "gpt":
132
+ message["role"] = "assistant"
133
+ else:
134
+ raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")
135
+
136
+ message["content"] = m["value"]
137
+ if overrides is not None and m["from"] in overrides:
138
+ message["content"] = overrides[m["from"]]
139
+ conversation.append(message)
140
+
141
+ if no_system_prompt:
142
+ conversation = [{"role": "system", "content": ""}] + conversation
143
+
144
+ text = tokenizer.apply_chat_template(
145
+ conversation,
146
+ add_generation_prompt=add_generation_prompt,
147
+ tokenize=False,
148
+ )
149
+ return tokenizer_image_token(text, tokenizer, return_tensors="pt")
150
+
151
+ def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
152
+ _maybe_add_sentinel_token(tokenizer)
153
+ template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})
154
+
155
+ stop_tokens = {tokenizer.eos_token}
156
+ for k in range(template.size(0) - 1):
157
+ if template[k] == tokenizer.sentinel_token_id:
158
+ stop_token = tokenizer.decode(template[k + 1])
159
+ stop_tokens.add(stop_token)
160
+ return list(stop_tokens)
161
+
162
+ def context_length_extension(config):
163
+ orig_ctx_len = getattr(config, "max_position_embeddings", None)
164
+ model_max_length = getattr(config, "model_max_length", None)
165
+ if orig_ctx_len and model_max_length > orig_ctx_len:
166
+ print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
167
+ scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
168
+ config.rope_scaling = {"type": "linear", "factor": scaling_factor}
169
+ return config
170
+
171
+
172
+ def build_llm_and_tokenizer(
173
+ model_name_or_path: str,
174
+ config: PretrainedConfig,
175
+ attn_implementation=None,
176
+ model_max_length=None,
177
+ *args,
178
+ **kwargs,
179
+ ) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
180
+ # print(model_name_or_path)
181
+ llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
182
+ llm_cfg._attn_implementation = attn_implementation
183
+ llm_cfg.model_max_length = model_max_length
184
+ if model_max_length is not None:
185
+ context_length_extension(llm_cfg)
186
+
187
+ # Quantization related
188
+ quantization_restore_from_checkpoint = False
189
+
190
+ if quantization_restore_from_checkpoint:
191
+ fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None)
192
+
193
+ llm = AutoModelForCausalLM.from_pretrained(
194
+ fp8_model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
195
+ )
196
+ else:
197
+ llm = AutoModelForCausalLM.from_pretrained(
198
+ model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
199
+ )
200
+ # NOTE(ligeng): not sure whether it affects the training
201
+ # packing.patch(llm)
202
+
203
+ # Locate the tokenizer.
204
+ llm_path = model_name_or_path
205
+ if not has_tokenizer(llm_path):
206
+ llm_path = osp.join(llm_path, "llm")
207
+ if not has_tokenizer(llm_path):
208
+ raise ValueError(f"Cannot find tokenizer in {llm_path}.")
209
+
210
+ tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False)
211
+ if model_max_length is not None:
212
+ tokenizer.model_max_length = model_max_length
213
+
214
+ # Load chat template if specified.
215
+ if getattr(config, "chat_template", None) is not None:
216
+ print(f"Using chat template: {config.chat_template}")
217
+ fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
218
+ with open(fpath) as fd:
219
+ chat_template = fd.read()
220
+ tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
221
+
222
+ # NOTE(ligeng): disable temporarially, let see will any bugs introduce
223
+ # Set stop tokens for the tokenizer
224
+ tokenizer.stop_tokens = infer_stop_tokens(tokenizer)
225
+ tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens)
226
+
227
+ # Add media tokens to the tokenizer
228
+ tokenizer.media_tokens = MEDIA_TOKENS
229
+ tokenizer.media_token_ids = {}
230
+ for name, token in MEDIA_TOKENS.items():
231
+ tokenizer.add_tokens([token], special_tokens=True)
232
+ tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token)
233
+
234
+ # TODO(ligeng): is this necessary for llava?
235
+ config.hidden_size = llm.config.hidden_size
236
+ return llm, tokenizer
config.json ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model",
4
+ "architectures": [
5
+ "VILAForCasualLM"
6
+ ],
7
+ "chat_template": null,
8
+ "drop_path_rate": 0.0,
9
+ "dynamic_s2": false,
10
+ "fps": 0.0,
11
+ "hidden_size": 1536,
12
+ "image_aspect_ratio": "dynamic",
13
+ "interpolate_mode": "linear",
14
+ "llm_cfg": {
15
+ "_attn_implementation_autoset": false,
16
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/llm",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "Qwen2ForCausalLM"
20
+ ],
21
+ "attention_dropout": 0.0,
22
+ "bad_words_ids": null,
23
+ "begin_suppress_tokens": null,
24
+ "bos_token_id": 151643,
25
+ "chunk_size_feed_forward": 0,
26
+ "cross_attention_hidden_size": null,
27
+ "decoder_start_token_id": null,
28
+ "diversity_penalty": 0.0,
29
+ "do_sample": false,
30
+ "early_stopping": false,
31
+ "encoder_no_repeat_ngram_size": 0,
32
+ "eos_token_id": 151645,
33
+ "exponential_decay_length_penalty": null,
34
+ "finetuning_task": null,
35
+ "forced_bos_token_id": null,
36
+ "forced_eos_token_id": null,
37
+ "hidden_act": "silu",
38
+ "hidden_size": 1536,
39
+ "id2label": {
40
+ "0": "LABEL_0",
41
+ "1": "LABEL_1"
42
+ },
43
+ "initializer_range": 0.02,
44
+ "intermediate_size": 8960,
45
+ "is_decoder": false,
46
+ "is_encoder_decoder": false,
47
+ "label2id": {
48
+ "LABEL_0": 0,
49
+ "LABEL_1": 1
50
+ },
51
+ "length_penalty": 1.0,
52
+ "max_length": 20,
53
+ "max_position_embeddings": 32768,
54
+ "max_window_layers": 28,
55
+ "min_length": 0,
56
+ "model_max_length": 4096,
57
+ "model_type": "qwen2",
58
+ "no_repeat_ngram_size": 0,
59
+ "num_attention_heads": 12,
60
+ "num_beam_groups": 1,
61
+ "num_beams": 1,
62
+ "num_hidden_layers": 28,
63
+ "num_key_value_heads": 2,
64
+ "num_return_sequences": 1,
65
+ "output_attentions": false,
66
+ "output_hidden_states": false,
67
+ "output_scores": false,
68
+ "pad_token_id": null,
69
+ "prefix": null,
70
+ "problem_type": null,
71
+ "pruned_heads": {},
72
+ "remove_invalid_values": false,
73
+ "repetition_penalty": 1.0,
74
+ "return_dict": true,
75
+ "return_dict_in_generate": false,
76
+ "rms_norm_eps": 1e-06,
77
+ "rope_scaling": null,
78
+ "rope_theta": 1000000.0,
79
+ "sep_token_id": null,
80
+ "sliding_window": null,
81
+ "suppress_tokens": null,
82
+ "task_specific_params": null,
83
+ "temperature": 1.0,
84
+ "tf_legacy_loss": false,
85
+ "tie_encoder_decoder": false,
86
+ "tie_word_embeddings": true,
87
+ "tokenizer_class": null,
88
+ "tokenizer_model_max_length": 4096,
89
+ "tokenizer_padding_side": "right",
90
+ "top_k": 50,
91
+ "top_p": 1.0,
92
+ "torch_dtype": "bfloat16",
93
+ "torchscript": false,
94
+ "typical_p": 1.0,
95
+ "use_bfloat16": false,
96
+ "use_cache": true,
97
+ "use_sliding_window": false,
98
+ "vocab_size": 151648
99
+ },
100
+ "mm_hidden_size": 1152,
101
+ "mm_projector_cfg": {
102
+ "_attn_implementation_autoset": false,
103
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/mm_projector",
104
+ "add_cross_attention": false,
105
+ "architectures": [
106
+ "MultimodalProjector"
107
+ ],
108
+ "bad_words_ids": null,
109
+ "begin_suppress_tokens": null,
110
+ "bos_token_id": null,
111
+ "chunk_size_feed_forward": 0,
112
+ "cross_attention_hidden_size": null,
113
+ "decoder_start_token_id": null,
114
+ "diversity_penalty": 0.0,
115
+ "do_sample": false,
116
+ "early_stopping": false,
117
+ "encoder_no_repeat_ngram_size": 0,
118
+ "eos_token_id": null,
119
+ "exponential_decay_length_penalty": null,
120
+ "finetuning_task": null,
121
+ "forced_bos_token_id": null,
122
+ "forced_eos_token_id": null,
123
+ "id2label": {
124
+ "0": "LABEL_0",
125
+ "1": "LABEL_1"
126
+ },
127
+ "is_decoder": false,
128
+ "is_encoder_decoder": false,
129
+ "label2id": {
130
+ "LABEL_0": 0,
131
+ "LABEL_1": 1
132
+ },
133
+ "length_penalty": 1.0,
134
+ "max_length": 20,
135
+ "min_length": 0,
136
+ "mm_projector_type": "mlp_downsample_3x3_fix",
137
+ "model_type": "v2l_projector",
138
+ "no_repeat_ngram_size": 0,
139
+ "num_beam_groups": 1,
140
+ "num_beams": 1,
141
+ "num_return_sequences": 1,
142
+ "output_attentions": false,
143
+ "output_hidden_states": false,
144
+ "output_scores": false,
145
+ "pad_token_id": null,
146
+ "prefix": null,
147
+ "problem_type": null,
148
+ "pruned_heads": {},
149
+ "remove_invalid_values": false,
150
+ "repetition_penalty": 1.0,
151
+ "return_dict": true,
152
+ "return_dict_in_generate": false,
153
+ "sep_token_id": null,
154
+ "suppress_tokens": null,
155
+ "task_specific_params": null,
156
+ "temperature": 1.0,
157
+ "tf_legacy_loss": false,
158
+ "tie_encoder_decoder": false,
159
+ "tie_word_embeddings": true,
160
+ "tokenizer_class": null,
161
+ "top_k": 50,
162
+ "top_p": 1.0,
163
+ "torch_dtype": "bfloat16",
164
+ "torchscript": false,
165
+ "typical_p": 1.0,
166
+ "use_bfloat16": false
167
+ },
168
+ "mm_projector_lr": null,
169
+ "mm_use_im_patch_token": true,
170
+ "mm_use_im_start_end": false,
171
+ "mm_vision_select_feature": "cls_patch",
172
+ "mm_vision_select_layer": -2,
173
+ "model_dtype": "torch.bfloat16",
174
+ "model_type": "vila",
175
+ "num_time_tokens": 0,
176
+ "num_video_frames": 8,
177
+ "resume_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model",
178
+ "s2": false,
179
+ "s2_max_split_size": 336,
180
+ "s2_resize_output_to_scale_idx": 0,
181
+ "s2_scales": "336,672,1008",
182
+ "soft_ce_std": 1.0,
183
+ "time_token_format": "<t{t}>",
184
+ "time_token_ids": [],
185
+ "transformers_version": "4.46.0",
186
+ "tune_language_model": true,
187
+ "tune_mm_projector": true,
188
+ "tune_vision_tower": true,
189
+ "vision_resolution": -1,
190
+ "vision_tower_cfg": {
191
+ "_attn_implementation_autoset": false,
192
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/vision_tower",
193
+ "add_cross_attention": false,
194
+ "architectures": [
195
+ "SiglipVisionModel"
196
+ ],
197
+ "attention_dropout": 0.0,
198
+ "bad_words_ids": null,
199
+ "begin_suppress_tokens": null,
200
+ "bos_token_id": null,
201
+ "chunk_size_feed_forward": 0,
202
+ "cross_attention_hidden_size": null,
203
+ "decoder_start_token_id": null,
204
+ "diversity_penalty": 0.0,
205
+ "do_sample": false,
206
+ "early_stopping": false,
207
+ "encoder_no_repeat_ngram_size": 0,
208
+ "eos_token_id": null,
209
+ "exponential_decay_length_penalty": null,
210
+ "finetuning_task": null,
211
+ "forced_bos_token_id": null,
212
+ "forced_eos_token_id": null,
213
+ "hidden_act": "gelu_pytorch_tanh",
214
+ "hidden_size": 1152,
215
+ "id2label": {
216
+ "0": "LABEL_0",
217
+ "1": "LABEL_1"
218
+ },
219
+ "image_size": 448,
220
+ "intermediate_size": 4304,
221
+ "is_decoder": false,
222
+ "is_encoder_decoder": false,
223
+ "label2id": {
224
+ "LABEL_0": 0,
225
+ "LABEL_1": 1
226
+ },
227
+ "layer_norm_eps": 1e-06,
228
+ "length_penalty": 1.0,
229
+ "max_length": 20,
230
+ "min_length": 0,
231
+ "model_type": "siglip_vision_model",
232
+ "no_repeat_ngram_size": 0,
233
+ "num_attention_heads": 16,
234
+ "num_beam_groups": 1,
235
+ "num_beams": 1,
236
+ "num_channels": 3,
237
+ "num_hidden_layers": 27,
238
+ "num_image_tokens": 256,
239
+ "num_return_sequences": 1,
240
+ "output_attentions": false,
241
+ "output_hidden_states": false,
242
+ "output_scores": false,
243
+ "pad_token_id": null,
244
+ "patch_size": 14,
245
+ "prefix": null,
246
+ "problem_type": null,
247
+ "projection_dim": 2048,
248
+ "projector_hidden_act": "gelu_fast",
249
+ "pruned_heads": {},
250
+ "remove_invalid_values": false,
251
+ "repetition_penalty": 1.0,
252
+ "return_dict": true,
253
+ "return_dict_in_generate": false,
254
+ "sep_token_id": null,
255
+ "suppress_tokens": null,
256
+ "task_specific_params": null,
257
+ "temperature": 1.0,
258
+ "tf_legacy_loss": false,
259
+ "tie_encoder_decoder": false,
260
+ "tie_word_embeddings": true,
261
+ "tokenizer_class": null,
262
+ "top_k": 50,
263
+ "top_p": 1.0,
264
+ "torch_dtype": "bfloat16",
265
+ "torchscript": false,
266
+ "typical_p": 1.0,
267
+ "use_bfloat16": false,
268
+ "vision_use_head": false
269
+ },
270
+ "version": "2.0",
271
+ "auto_map": {
272
+ "AutoConfig": "modeling_vila.VILAConfig",
273
+ "AutoModel": "modeling_vila.VILAForCasualLM",
274
+ "AutoModelForCausalLM": "modeling_vila.VILAForCasualLM"
275
+ }
276
+ }
configuration_vila.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional
3
+ import json
4
+ import torch
5
+ import torchvision
6
+ import os, os.path as osp
7
+
8
+ from threading import Thread
9
+ from copy import deepcopy
10
+ from PIL import Image
11
+ from transformers import Qwen2Config, PretrainedConfig, PreTrainedModel
12
+ from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer
13
+
14
+ class VILAConfig(PretrainedConfig):
15
+ model_type = "vila"
16
+ keys_to_ignore_at_inference = ["past_key_values"]
17
+
18
+ def __init__(
19
+ self,
20
+ llm_cfg=None,
21
+ vision_tower_cfg=None,
22
+ mm_projector_cfg=None,
23
+ architectures=None,
24
+ resume_path=None,
25
+ hidden_size=None,
26
+ mm_hidden_size=None,
27
+ image_aspect_ratio=None,
28
+ num_video_frames=None,
29
+ fps=None,
30
+ mm_vision_select_layer=None,
31
+ mm_vision_select_feature=None,
32
+ mm_use_im_start_end=False,
33
+ mm_use_im_patch_token=False,
34
+ mm_projector_lr=None,
35
+ vision_tower_lr=None,
36
+ vision_resolution=None,
37
+ interpolate_mode=None,
38
+ s2=None,
39
+ dynamic_s2=None,
40
+ s2_scales=None,
41
+ s2_max_split_size=None,
42
+ s2_resize_output_to_scale_idx=0,
43
+ min_tiles: Optional[int] = 1,
44
+ max_tiles: Optional[int] = 12,
45
+ num_time_tokens=None,
46
+ time_token_format=None,
47
+ image_encoder: str = '{"_target_": "llava.model.encoders.BasicImageEncoder"}',
48
+ video_encoder: str = '{"_target_": "llava.model.encoders.BasicVideoEncoder"}',
49
+ **kwargs,
50
+ ):
51
+ super().__init__()
52
+ self.architectures = architectures
53
+ self.llm_cfg = llm_cfg
54
+ self.vision_tower_cfg = vision_tower_cfg
55
+ self.mm_projector_cfg = mm_projector_cfg
56
+ self.resume_path = resume_path
57
+
58
+ self.hidden_size = hidden_size
59
+ self.mm_hidden_size = mm_hidden_size
60
+ self.image_aspect_ratio = image_aspect_ratio
61
+ self.num_video_frames = num_video_frames
62
+ self.fps = fps
63
+ self.mm_vision_select_layer = mm_vision_select_layer
64
+ self.mm_vision_select_feature = mm_vision_select_feature
65
+ self.mm_use_im_start_end = mm_use_im_start_end
66
+ self.mm_use_im_patch_token = mm_use_im_patch_token
67
+ self.mm_projector_lr = mm_projector_lr
68
+ self.vision_tower_lr = vision_tower_lr
69
+ self.vision_resolution = vision_resolution
70
+ self.interpolate_mode = interpolate_mode
71
+ self.s2 = s2
72
+ self.dynamic_s2 = dynamic_s2
73
+ self.s2_scales = s2_scales
74
+ self.s2_max_split_size = s2_max_split_size
75
+ self.s2_resize_output_to_scale_idx = s2_resize_output_to_scale_idx
76
+ self.min_tiles = min_tiles
77
+ self.max_tiles = max_tiles
78
+ self.num_time_tokens = num_time_tokens
79
+ self.time_token_format = time_token_format
80
+
81
+ self.image_encoder = image_encoder
82
+ self.video_encoder = video_encoder
83
+
84
+ super().__init__(**kwargs)
85
+
constants.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
18
+ WORKER_HEART_BEAT_INTERVAL = 15
19
+
20
+ LOGDIR = "."
21
+
22
+ # Model Constants
23
+ IGNORE_INDEX = -100
24
+ DEFAULT_IMAGE_TOKEN = "<image>"
25
+
26
+ SENTINEL_TOKEN = "<vila/sentinel>"
27
+ MEDIA_TOKENS = {
28
+ "image": "<image>",
29
+ "video": "<vila/video>",
30
+ }
31
+ # <image> <vila/video> <vila/sentinel>
32
+ # TODO(ligeng): need to discuss with Zhijian for the following tokens for different models.
33
+ """
34
+ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
35
+ 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
36
+ 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
37
+ 151646: AddedToken("[BOS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
38
+ 151647: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
39
+ 151648: AddedToken("<vila/sentinel>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
40
+ 151649: AddedToken("<image>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
41
+ 151650: AddedToken("<vila/video>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
42
+ """
43
+ NUM_EXTRA_TOKENS = 8
conversation.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+ # This file is modified from https://github.com/haotian-liu/LLaVA/
17
+
18
+ import dataclasses
19
+ from enum import Enum, auto
20
+ from typing import List
21
+
22
+ # from llava.utils.logging import logger
23
+
24
+
25
+ class SeparatorStyle(Enum):
26
+ """Different separator style."""
27
+
28
+ AUTO = auto()
29
+ TWO = auto()
30
+ MPT = auto()
31
+ PLAIN = auto()
32
+ LLAMA_3 = auto()
33
+
34
+
35
+ @dataclasses.dataclass
36
+ class Conversation:
37
+ """A class that keeps all conversation history."""
38
+
39
+ system: str
40
+ roles: List[str]
41
+ messages: List[List[str]]
42
+ sep_style: SeparatorStyle = SeparatorStyle.AUTO
43
+ sep: str = "###"
44
+ sep2: str = None
45
+ version: str = "Unknown"
46
+
47
+ def get_prompt(self):
48
+ messages = self.messages
49
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
50
+ messages = self.messages.copy()
51
+ init_role, init_msg = messages[0].copy()
52
+ init_msg = init_msg[0].replace("<image>", "").strip()
53
+ messages[0] = (init_role, "<image>\n" + init_msg)
54
+
55
+ if self.sep_style == SeparatorStyle.TWO:
56
+ seps = [self.sep, self.sep2]
57
+ ret = self.system + seps[0]
58
+ for i, (role, message) in enumerate(messages):
59
+ if message:
60
+ if type(message) is tuple:
61
+ message, _, _ = message
62
+ ret += role + ": " + message + seps[i % 2]
63
+ else:
64
+ ret += role + ":"
65
+ elif self.sep_style == SeparatorStyle.LLAMA_3:
66
+ ret = self.system + self.sep
67
+ for rid, (role, message) in enumerate(messages):
68
+ if message:
69
+ if type(message) is tuple:
70
+ message = message[0]
71
+ sep = self.sep if rid < len(messages) - 1 else self.sep2
72
+ ret += role + message + sep
73
+ else:
74
+ ret += role
75
+ elif self.sep_style == SeparatorStyle.MPT:
76
+ ret = self.system + self.sep
77
+ for role, message in messages:
78
+ if message:
79
+ if type(message) is tuple:
80
+ message, _, _ = message
81
+ ret += role + message + self.sep
82
+ else:
83
+ ret += role
84
+ elif self.sep_style == SeparatorStyle.PLAIN:
85
+ seps = [self.sep, self.sep2]
86
+ ret = self.system
87
+ for i, (role, message) in enumerate(messages):
88
+ if message:
89
+ if type(message) is tuple:
90
+ message, _, _ = message
91
+ ret += message + seps[i % 2]
92
+ else:
93
+ ret += ""
94
+ else:
95
+ raise ValueError(f"Invalid style: {self.sep_style}")
96
+
97
+ return ret
98
+
99
+ def append_message(self, role, message):
100
+ self.messages.append([role, message])
101
+
102
+ def copy(self):
103
+ return Conversation(
104
+ system=self.system,
105
+ roles=self.roles,
106
+ messages=[[x, y] for x, y in self.messages],
107
+ sep_style=self.sep_style,
108
+ sep=self.sep,
109
+ sep2=self.sep2,
110
+ version=self.version,
111
+ )
112
+
113
+
114
+ conv_auto = Conversation(
115
+ system="",
116
+ roles=("", ""),
117
+ messages=(),
118
+ sep_style=SeparatorStyle.AUTO,
119
+ sep="\n",
120
+ )
121
+
122
+ conv_vicuna_v1 = Conversation(
123
+ system="A chat between a curious user and an artificial intelligence assistant. "
124
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
125
+ roles=("USER", "ASSISTANT"),
126
+ version="v1",
127
+ messages=(),
128
+ sep_style=SeparatorStyle.TWO,
129
+ sep=" ",
130
+ sep2="</s>",
131
+ )
132
+
133
+ conv_llava_plain = Conversation(
134
+ system="",
135
+ roles=("", ""),
136
+ messages=(),
137
+ sep_style=SeparatorStyle.PLAIN,
138
+ sep="\n",
139
+ )
140
+
141
+ hermes_2 = Conversation(
142
+ system="<|im_start|>system\nAnswer the questions.",
143
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
144
+ sep_style=SeparatorStyle.MPT,
145
+ sep="<|im_end|>",
146
+ messages=(),
147
+ version="hermes-2",
148
+ )
149
+
150
+ # Template added by Yukang. Note (kentang-mit@): sep is <|eot_id|> for official template.
151
+ llama_3_chat = Conversation(
152
+ system="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. "
153
+ "You are able to understand the visual content that the user provides, "
154
+ "and assist the user with a variety of tasks using natural language.",
155
+ roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
156
+ version="llama_v3",
157
+ messages=(),
158
+ sep_style=SeparatorStyle.LLAMA_3,
159
+ sep="<|eot_id|>",
160
+ sep2="<|end_of_text|>",
161
+ )
162
+
163
+
164
+ default_conversation = conv_auto
165
+ conv_templates = {
166
+ "auto": conv_auto,
167
+ "hermes-2": hermes_2,
168
+ "llama_3": llama_3_chat,
169
+ "v1": conv_vicuna_v1,
170
+ "vicuna_v1": conv_vicuna_v1,
171
+ "plain": conv_llava_plain,
172
+ }
173
+
174
+
175
+ CONVERSATION_MODE_MAPPING = {
176
+ "vila1.5-3b": "vicuna_v1",
177
+ "vila1.5-8b": "llama_3",
178
+ "vila1.5-13b": "vicuna_v1",
179
+ "vila1.5-40b": "hermes-2",
180
+ "llama-3": "llama_3",
181
+ "llama3": "llama_3",
182
+ }
183
+
184
+
185
+ def auto_set_conversation_mode(model_name_or_path: str) -> str:
186
+ global default_conversation
187
+ for k, v in CONVERSATION_MODE_MAPPING.items():
188
+ if k in model_name_or_path.lower():
189
+ print(f"Setting conversation mode to `{v}` based on model name/path `{model_name_or_path}`.")
190
+ default_conversation = conv_templates[v]
191
+ return
llm/added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644,
5
+ "[BOS]": 151646,
6
+ "[PAD]": 151647
7
+ }
llm/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/llm",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_max_length": 4096,
16
+ "model_type": "qwen2",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000.0,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "tokenizer_model_max_length": 4096,
26
+ "tokenizer_padding_side": "right",
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.46.0",
29
+ "use_cache": true,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151648
32
+ }
llm/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.0"
14
+ }
llm/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
llm/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe90977102f7c2ffc3c0c9fff9cb6bad16937a2e93c49a0a41976fc2a50dd077
3
+ size 3086582408
llm/special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "[BOS]",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "[PAD]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
llm/tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "[BOS]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "[PAD]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "additional_special_tokens": [
46
+ "<|im_start|>",
47
+ "<|im_end|>"
48
+ ],
49
+ "bos_token": "[BOS]",
50
+ "chat_template": "{% if messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages if message['content'] is not none %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}",
51
+ "clean_up_tokenization_spaces": false,
52
+ "eos_token": "<|im_end|>",
53
+ "errors": "replace",
54
+ "legacy": false,
55
+ "model_max_length": 4096,
56
+ "pad_token": "[PAD]",
57
+ "padding_side": "right",
58
+ "split_special_tokens": false,
59
+ "tokenizer_class": "Qwen2Tokenizer",
60
+ "unk_token": null
61
+ }
llm/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
main.py ADDED
File without changes
media.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ from collections import defaultdict
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ import cv2
7
+ import numpy as np
8
+ import PIL
9
+ import PIL.Image
10
+ import requests
11
+ from transformers import PretrainedConfig
12
+
13
+ # from llava.constants import MEDIA_TOKENS
14
+ # from llava.media import Image, Video
15
+ # from llava.utils import make_list
16
+ # from llava.utils.logging import logger
17
+
18
+ MEDIA_TOKENS = {
19
+ "image": "<image>",
20
+ "video": "<vila/video>",
21
+ }
22
+
23
+ class Media:
24
+ pass
25
+
26
+ class File(Media):
27
+ def __init__(self, path: str) -> None:
28
+ self.path = path
29
+
30
+ class Image(File):
31
+ pass
32
+
33
+
34
+ class Video(File):
35
+ pass
36
+
37
+ def make_list(obj: Any) -> List:
38
+ return obj if isinstance(obj, list) else [obj]
39
+
40
+
41
+ def _extract_image(image: Union[Image, PIL.Image.Image]) -> PIL.Image.Image:
42
+ if isinstance(image, Image):
43
+ if image.path.startswith("http://") or image.path.startswith("https://"):
44
+ image = PIL.Image.open(requests.get(image.path, stream=True).raw)
45
+ else:
46
+ image = PIL.Image.open(image.path)
47
+ return image
48
+
49
+
50
+ def _load_video(video_path: str, *, num_frames: int) -> List[PIL.Image.Image]:
51
+ # Load video frames from a directory
52
+ if os.path.isdir(video_path):
53
+ frame_paths = sorted(glob.glob(os.path.join(video_path, "*")))
54
+ indices = np.round(np.linspace(0, len(frame_paths) - 1, num_frames)).astype(int)
55
+ return [PIL.Image.open(frame_paths[index]) for index in indices]
56
+
57
+ # Load video frames from a video file
58
+ vidcap = cv2.VideoCapture(video_path)
59
+
60
+ # Find the last frame as frame count might not be accurate
61
+ frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
62
+ while frame_count > 0:
63
+ vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
64
+ if vidcap.grab():
65
+ break
66
+ frame_count -= 1
67
+ else:
68
+ raise ValueError(f"Video '{video_path}' has no frames.")
69
+
70
+ # Extract frames uniformly
71
+ indices = np.round(np.linspace(0, frame_count - 1, num_frames)).astype(int)
72
+ frames = {}
73
+ for index in indices:
74
+ if index in frames:
75
+ continue
76
+ vidcap.set(cv2.CAP_PROP_POS_FRAMES, index)
77
+ success, frame = vidcap.read()
78
+ if not success:
79
+ print(f"Failed to read frame {index} from video '{video_path}'. Skipped.")
80
+ continue
81
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
82
+ frames[index] = PIL.Image.fromarray(frame)
83
+ return [frames[index] for index in indices if index in frames]
84
+
85
+
86
+ def _extract_video(video: Video, config: PretrainedConfig) -> List[PIL.Image.Image]:
87
+ num_frames = config.num_video_frames
88
+ if getattr(config, "fps") != 0:
89
+ print("Extracting frames from video with specified FPS is not supported yet. Ignored.")
90
+
91
+ frames = _load_video(video.path, num_frames=num_frames)
92
+ return frames
93
+
94
+
95
+ def extract_media(
96
+ messages: List[Dict[str, Any]],
97
+ config: Optional[PretrainedConfig] = None,
98
+ draft: bool = False,
99
+ ) -> Dict[str, List[Any]]:
100
+ media = defaultdict(list)
101
+ for message in messages:
102
+ text = ""
103
+ for part in make_list(message["value"]):
104
+ if isinstance(part, str):
105
+ for token in MEDIA_TOKENS.values():
106
+ if token in part:
107
+ print(f"Media token '{token}' found in text: '{part}'. Removed.")
108
+ part = part.replace(token, "").strip()
109
+ text += part
110
+ elif isinstance(part, (Image, PIL.Image.Image)):
111
+ if draft:
112
+ media["image"].append(part)
113
+ else:
114
+ media["image"].append(_extract_image(part))
115
+ text += MEDIA_TOKENS["image"]
116
+ elif isinstance(part, Video):
117
+ if draft:
118
+ media["video"].append(part)
119
+ else:
120
+ media["video"].append(_extract_video(part, config))
121
+ text += MEDIA_TOKENS["video"]
122
+ else:
123
+ raise ValueError(f"Unsupported prompt part type: {type(part)}")
124
+ message["value"] = text
125
+ return media
media_encoder.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from functools import partial
4
+ from typing import Any, Dict, List, Optional
5
+
6
+
7
+ class BaseEncoder(nn.Module):
8
+ def __init__(self, parent: nn.Module) -> None:
9
+ super().__init__()
10
+ self._parent = [parent]
11
+
12
+ @property
13
+ def parent(self) -> nn.Module:
14
+ return self._parent[0]
15
+
16
+
17
+ class BasicImageEncoder(BaseEncoder):
18
+ def __init__(
19
+ self,
20
+ parent: torch.nn.Module,
21
+ start_tokens: Optional[str] = None,
22
+ end_tokens: Optional[str] = "\n",
23
+ ) -> None:
24
+ super().__init__(parent)
25
+ self.start_tokens = start_tokens
26
+ self.end_tokens = end_tokens
27
+
28
+ def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
29
+ if tokens is None:
30
+ return None
31
+ token_ids = self.parent.tokenizer(tokens).input_ids
32
+ token_ids = torch.tensor(token_ids, device=self.parent.device)
33
+ return self.parent.llm.model.embed_tokens(token_ids)
34
+
35
+ def _process_features(
36
+ self,
37
+ features: torch.Tensor,
38
+ start_token_embeds: Optional[torch.Tensor],
39
+ end_token_embeds: Optional[torch.Tensor],
40
+ ) -> torch.Tensor:
41
+ if start_token_embeds is not None:
42
+ features = torch.cat([start_token_embeds, features], dim=0)
43
+ if end_token_embeds is not None:
44
+ features = torch.cat([features, end_token_embeds], dim=0)
45
+ return features
46
+
47
+ def forward(self, images: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
48
+ images = torch.stack(images, dim=0)
49
+ features = self.parent.encode_images(images, block_sizes=config.get("block_sizes"))
50
+ process_features = partial(
51
+ self._process_features,
52
+ start_token_embeds=self.embed_tokens(self.start_tokens),
53
+ end_token_embeds=self.embed_tokens(self.end_tokens),
54
+ )
55
+ return [process_features(f) for f in features]
56
+
57
+
58
+ class BasicVideoEncoder(BaseEncoder):
59
+ def __init__(
60
+ self,
61
+ parent: torch.nn.Module,
62
+ start_tokens: Optional[str] = None,
63
+ end_tokens: Optional[str] = "\n",
64
+ ) -> None:
65
+ super().__init__(parent)
66
+ self.start_tokens = start_tokens
67
+ self.end_tokens = end_tokens
68
+
69
+ def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
70
+ if tokens is None:
71
+ return None
72
+ token_ids = self.parent.tokenizer(tokens).input_ids
73
+ token_ids = torch.tensor(token_ids, device=self.parent.device)
74
+ return self.parent.llm.model.embed_tokens(token_ids)
75
+
76
+ def _process_features(
77
+ self,
78
+ features: torch.Tensor,
79
+ start_token_embeds: Optional[torch.Tensor],
80
+ end_token_embeds: Optional[torch.Tensor],
81
+ ) -> torch.Tensor:
82
+ if start_token_embeds is not None:
83
+ start_embeds = torch.stack([start_token_embeds] * features.shape[0], dim=0)
84
+ features = torch.cat([start_embeds, features], dim=1)
85
+ if end_token_embeds is not None:
86
+ end_embeds = torch.stack([end_token_embeds] * features.shape[0], dim=0)
87
+ features = torch.cat([features, end_embeds], dim=1)
88
+ return features.flatten(0, 1)
89
+
90
+ def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
91
+ num_frames = [video.shape[0] for video in videos]
92
+ images = torch.cat(videos, dim=0)
93
+ features = self.parent.encode_images(images)
94
+ features = torch.split(features, num_frames)
95
+ process_features = partial(
96
+ self._process_features,
97
+ start_token_embeds=self.embed_tokens(self.start_tokens),
98
+ end_token_embeds=self.embed_tokens(self.end_tokens),
99
+ )
100
+ return [process_features(f) for f in features]
mm_projector/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/mm_projector",
3
+ "architectures": [
4
+ "MultimodalProjector"
5
+ ],
6
+ "mm_projector_type": "mlp_downsample_3x3_fix",
7
+ "model_type": "v2l_projector",
8
+ "torch_dtype": "bfloat16",
9
+ "transformers_version": "4.46.0"
10
+ }
mm_projector/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:191ffde694a269d7b0ca2f1e30da5d5fecf2a9bb8f4879fbf0b780368c6a9cc4
3
+ size 87068272
mm_utils.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ # dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
18
+
19
+ import base64
20
+ import os
21
+ import tempfile
22
+ from io import BytesIO
23
+
24
+ import numpy as np
25
+ import torch
26
+ from PIL import Image
27
+ from transformers import StoppingCriteria
28
+
29
+ from llava.constants import DEFAULT_IMAGE_TOKEN
30
+
31
+
32
+ def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
33
+ import cv2
34
+
35
+ if fps == None or frame_count == None:
36
+ # if one of fps or frame_count is None, still recompute
37
+ fps = vidcap.get(cv2.CAP_PROP_FPS)
38
+ frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
39
+ if fps == 0 or frame_count == 0:
40
+ print(f"Video file not found. return empty images. {video_file_name}")
41
+ return [
42
+ Image.new("RGB", (720, 720)),
43
+ ] * num_frames, 0
44
+
45
+ duration = frame_count / fps
46
+ frame_interval = frame_count // num_frames
47
+ if frame_interval == 0 and frame_count <= 1:
48
+ print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
49
+ return [
50
+ Image.new("RGB", (720, 720)),
51
+ ] * num_frames, 0
52
+ # print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
53
+
54
+ images = []
55
+ count = 0
56
+ success = True
57
+ frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
58
+ while success:
59
+ # print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
60
+ if frame_count >= num_frames:
61
+ success, frame = vidcap.read()
62
+ if count in frame_indices:
63
+ try:
64
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
65
+ im_pil = Image.fromarray(img)
66
+ images.append(im_pil)
67
+ except BaseException:
68
+ continue
69
+ if len(images) >= num_frames:
70
+ return images, num_frames
71
+ count += 1
72
+ else:
73
+ # Left padding frames if the video is not long enough
74
+ success, frame = vidcap.read()
75
+ if success:
76
+ try:
77
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
78
+ im_pil = Image.fromarray(img)
79
+ images.append(im_pil)
80
+ except BaseException:
81
+ continue
82
+ count += 1
83
+ else:
84
+ break
85
+ if len(images) == 0:
86
+ raise ValueError("Did not find enough frames in the video. return empty image.")
87
+
88
+ return images, len(images)
89
+
90
+
91
+ def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
92
+ """
93
+ num_frames is the max number of frames the model can support.
94
+ frame_count is the number of frames in the input video.
95
+ max_fps is the max FPS of the model can support.
96
+ fps is the fps of the input video.
97
+ """
98
+
99
+ import random
100
+
101
+ import cv2
102
+
103
+ if fps == None or frame_count == None:
104
+ # if one of fps or frame_count is None, still recompute
105
+ fps = vidcap.get(cv2.CAP_PROP_FPS)
106
+ frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
107
+
108
+ if fps == 0 or frame_count == 0:
109
+ print(f"Video file not found. return empty images. {video_file_name}")
110
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
111
+ return [
112
+ Image.new("RGB", (720, 720)),
113
+ ] * empty_video_frames, 0
114
+
115
+ duration = frame_count / fps
116
+ # print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
117
+ # If the video is too long (longer than max_fps and num_frames can support),
118
+ # we will use lower fps to sample frames.
119
+ if duration >= num_frames / max_fps:
120
+ frame_interval = frame_count // num_frames
121
+
122
+ # If the video is too short, we will skip the video if there is only one frame.
123
+ if frame_interval == 0 and frame_count <= 1:
124
+ print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
125
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
126
+ return [
127
+ Image.new("RGB", (720, 720)),
128
+ ] * empty_video_frames, 0
129
+
130
+ images = []
131
+ count = 0
132
+ success = True
133
+ frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
134
+
135
+ while success:
136
+ if frame_count >= num_frames:
137
+ # success, frame = vidcap.read()
138
+ if count in frame_indices:
139
+ success, frame = vidcap.read()
140
+ try:
141
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
142
+ im_pil = Image.fromarray(img)
143
+ images.append(im_pil)
144
+ except:
145
+ # print("Failed to read frame:", count)
146
+ continue
147
+ if len(images) >= num_frames:
148
+ return images, num_frames
149
+ else:
150
+ success = vidcap.grab()
151
+ count += 1
152
+ else:
153
+ # Left padding frames if the video is not long enough
154
+ success, frame = vidcap.read()
155
+ if success:
156
+ try:
157
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
158
+ im_pil = Image.fromarray(img)
159
+ images.append(im_pil)
160
+ except:
161
+ # print("Failed to read frame:", count)
162
+ continue
163
+ count += 1
164
+ else:
165
+ break
166
+ else:
167
+ frames_required = int(duration * max_fps)
168
+ frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
169
+ if frames_required == 0:
170
+ print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
171
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
172
+ return [
173
+ Image.new("RGB", (720, 720)),
174
+ ] * empty_video_frames, 0
175
+ elif frames_required == 1:
176
+ frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
177
+ images = []
178
+ count = 0
179
+ looked = 0
180
+ success = True
181
+
182
+ while success:
183
+ success, frame = vidcap.read()
184
+ if success and (looked in frame_indices):
185
+ try:
186
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
187
+ im_pil = Image.fromarray(img)
188
+ images.append(im_pil)
189
+ except:
190
+ continue
191
+ count += 1
192
+ looked += 1
193
+
194
+ if len(images) == 0:
195
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
196
+ return [
197
+ Image.new("RGB", (720, 720)),
198
+ ] * empty_video_frames, 0
199
+ else:
200
+ return images, len(images)
201
+
202
+
203
+ def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
204
+ """
205
+ Extract frames from a video using OpenCV.
206
+
207
+ Args:
208
+ vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
209
+ frames (int): Number of frames to extract from the video.
210
+ fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
211
+
212
+ Returns:
213
+ list: List of PIL Images extracted from the video.
214
+
215
+ Raises:
216
+ NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
217
+ """
218
+ import cv2
219
+
220
+ if isinstance(vpath_or_bytesio, str):
221
+ vidcap = cv2.VideoCapture(vpath_or_bytesio)
222
+ if max_fps > 0.0:
223
+ return get_frame_from_vcap_with_fps(
224
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
225
+ )
226
+ return get_frame_from_vcap(
227
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
228
+ )
229
+ elif isinstance(vpath_or_bytesio, (BytesIO,)):
230
+ # assuming mp4
231
+ with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
232
+ temp_video.write(vpath_or_bytesio.read())
233
+ temp_video_name = temp_video.name
234
+ vidcap = cv2.VideoCapture(temp_video_name)
235
+ if max_fps > 0.0:
236
+ return get_frame_from_vcap_with_fps(
237
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
238
+ )
239
+ return get_frame_from_vcap(
240
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
241
+ )
242
+ else:
243
+ raise NotImplementedError(type(vpath_or_bytesio))
244
+
245
+
246
+ def load_image_from_base64(image):
247
+ return Image.open(BytesIO(base64.b64decode(image)))
248
+
249
+
250
+ def expand2square(pil_img, background_color):
251
+ """
252
+ Expand the given PIL image to a square shape by adding padding.
253
+
254
+ Parameters:
255
+ - pil_img: The PIL image to be expanded.
256
+ - background_color: The color of the padding to be added.
257
+
258
+ Returns:
259
+ - The expanded PIL image.
260
+
261
+ If the image is already square, it is returned as is.
262
+ If the image is wider than it is tall, padding is added to the top and bottom.
263
+ If the image is taller than it is wide, padding is added to the left and right.
264
+ """
265
+ width, height = pil_img.size
266
+ if pil_img.mode == "L":
267
+ background_color = background_color[0]
268
+ if width == height:
269
+ return pil_img
270
+ elif width > height:
271
+ result = Image.new(pil_img.mode, (width, width), background_color)
272
+ result.paste(pil_img, (0, (width - height) // 2))
273
+ return result
274
+ else:
275
+ result = Image.new(pil_img.mode, (height, height), background_color)
276
+ result.paste(pil_img, ((height - width) // 2, 0))
277
+ return result
278
+
279
+
280
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
281
+ best_ratio_diff = float("inf")
282
+ best_ratio = (1, 1)
283
+ area = width * height
284
+ for ratio in target_ratios:
285
+ target_aspect_ratio = ratio[0] / ratio[1]
286
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
287
+ if ratio_diff < best_ratio_diff:
288
+ best_ratio_diff = ratio_diff
289
+ best_ratio = ratio
290
+ elif ratio_diff == best_ratio_diff:
291
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
292
+ best_ratio = ratio
293
+ return best_ratio
294
+
295
+
296
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
297
+ orig_width, orig_height = image.size
298
+ aspect_ratio = orig_width / orig_height
299
+
300
+ # calculate the existing image aspect ratio
301
+ target_ratios = {
302
+ (i, j)
303
+ for n in range(min_num, max_num + 1)
304
+ for i in range(1, n + 1)
305
+ for j in range(1, n + 1)
306
+ if i * j <= max_num and i * j >= min_num
307
+ }
308
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
309
+
310
+ # find the closest aspect ratio to the target
311
+ target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
312
+
313
+ # calculate the target width and height
314
+ target_width = image_size * target_aspect_ratio[0]
315
+ target_height = image_size * target_aspect_ratio[1]
316
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
317
+
318
+ # resize the image
319
+ resized_img = image.resize((target_width, target_height))
320
+ processed_images = []
321
+ for i in range(blocks):
322
+ box = (
323
+ (i % (target_width // image_size)) * image_size,
324
+ (i // (target_width // image_size)) * image_size,
325
+ ((i % (target_width // image_size)) + 1) * image_size,
326
+ ((i // (target_width // image_size)) + 1) * image_size,
327
+ )
328
+ # split the image
329
+ split_img = resized_img.crop(box)
330
+ processed_images.append(split_img)
331
+ assert len(processed_images) == blocks
332
+ if use_thumbnail and len(processed_images) != 1:
333
+ thumbnail_img = image.resize((image_size, image_size))
334
+ processed_images.append(thumbnail_img)
335
+ return processed_images
336
+
337
+
338
+ def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
339
+ orig_width, orig_height = image.size
340
+ aspect_ratio = orig_width / orig_height
341
+ min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
342
+
343
+ processed_images = []
344
+
345
+ ##########################################################################################
346
+ ############# Add tiles for all but the last scale using fixed squre ratio ###############
347
+ ##########################################################################################
348
+
349
+ for scale in s2_scales[:-1]:
350
+ target_width = image_size * (scale // s2_scales[0])
351
+ target_height = image_size * (scale // s2_scales[0])
352
+ blocks = (scale // s2_scales[0]) ** 2
353
+
354
+ # resize the image
355
+ resized_img = image.resize((target_width, target_height))
356
+ for i in range(blocks):
357
+ box = (
358
+ (i % (target_width // image_size)) * image_size,
359
+ (i // (target_width // image_size)) * image_size,
360
+ ((i % (target_width // image_size)) + 1) * image_size,
361
+ ((i // (target_width // image_size)) + 1) * image_size,
362
+ )
363
+ # split the image
364
+ split_img = resized_img.crop(box)
365
+ processed_images.append(split_img)
366
+
367
+ ##########################################################################################
368
+ ################ Add tiles for the last scale using dynamic aspect ratio #################
369
+ ##########################################################################################
370
+
371
+ # calculate the existing image aspect ratio
372
+ target_ratios = {
373
+ (i, j)
374
+ for n in range(min_num, max_num + 1)
375
+ for i in range(1, n + 1)
376
+ for j in range(1, n + 1)
377
+ if i * j <= max_num and i * j >= min_num
378
+ }
379
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
380
+
381
+ # find the closest aspect ratio to the target
382
+ target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
383
+
384
+ # calculate the target width and height
385
+ target_width = image_size * target_aspect_ratio[0]
386
+ target_height = image_size * target_aspect_ratio[1]
387
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
388
+
389
+ # resize the image
390
+ resized_img = image.resize((target_width, target_height))
391
+ for i in range(blocks):
392
+ box = (
393
+ (i % (target_width // image_size)) * image_size,
394
+ (i // (target_width // image_size)) * image_size,
395
+ ((i % (target_width // image_size)) + 1) * image_size,
396
+ ((i // (target_width // image_size)) + 1) * image_size,
397
+ )
398
+ # split the image
399
+ split_img = resized_img.crop(box)
400
+ processed_images.append(split_img)
401
+
402
+ return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
403
+
404
+
405
+ def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None):
406
+ prompt = prompt.split(DEFAULT_IMAGE_TOKEN)
407
+ idx = 0
408
+ all_images = []
409
+ for img in images:
410
+ processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles)
411
+ all_images.append(processed_images)
412
+ prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0])
413
+ idx += 2
414
+ prompt = "".join(prompt)
415
+ if all_images:
416
+ all_images = torch.cat(all_images)
417
+ else:
418
+ all_images = None
419
+ prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "")
420
+ return all_images, prompt
421
+
422
+
423
+ def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None):
424
+ idx = 0
425
+ all_images = []
426
+ all_block_size = []
427
+ for img in images:
428
+ processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
429
+ all_images.append(processed_images)
430
+ all_block_size.append(block_size)
431
+ idx += 2
432
+ if all_images:
433
+ all_images = torch.cat(all_images)
434
+ else:
435
+ all_images = None
436
+ return all_images, all_block_size
437
+
438
+
439
+ def process_image(
440
+ image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
441
+ ):
442
+ processor = data_args.image_processor
443
+ if isinstance(image_file, str):
444
+ if image_folder is not None:
445
+ image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
446
+ else:
447
+ image = Image.open(image_file).convert("RGB")
448
+ else:
449
+ # image is stored in bytearray
450
+ image = image_file
451
+ image = image.convert("RGB")
452
+ if hasattr(data_args.image_processor, "crop_size"):
453
+ # CLIP vision tower
454
+ crop_size = data_args.image_processor.crop_size
455
+ else:
456
+ # SIGLIP vision tower
457
+ assert hasattr(data_args.image_processor, "size")
458
+ crop_size = data_args.image_processor.size
459
+ if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
460
+ assert crop_size["height"] == crop_size["width"]
461
+ images, block_size = dynamic_s2_preprocess(
462
+ image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
463
+ )
464
+ images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
465
+ return torch.stack(images), block_size
466
+ if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
467
+ assert crop_size["height"] == crop_size["width"]
468
+ if max_tiles is not None:
469
+ max_num = max_tiles
470
+ else:
471
+ max_num = data_args.max_tiles
472
+ images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
473
+ images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
474
+ return torch.stack(images)
475
+
476
+ if data_args.image_aspect_ratio == "resize":
477
+ image = image.resize((crop_size["width"], crop_size["height"]))
478
+ if data_args.image_aspect_ratio == "pad":
479
+
480
+ def expand2square(pil_img, background_color):
481
+ width, height = pil_img.size
482
+ if width == height:
483
+ return pil_img
484
+ elif width > height:
485
+ result = Image.new(pil_img.mode, (width, width), background_color)
486
+ result.paste(pil_img, (0, (width - height) // 2))
487
+ return result
488
+ else:
489
+ result = Image.new(pil_img.mode, (height, height), background_color)
490
+ result.paste(pil_img, ((height - width) // 2, 0))
491
+ return result
492
+
493
+ image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
494
+ image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
495
+ else:
496
+ # Using default behavior of the vision encoder
497
+ # For CLIP, default is central crop
498
+ # For Radio, default is central crop
499
+ # For Siglip, default is resize
500
+ # For InternVIT, default is resize
501
+ image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
502
+ return image
503
+
504
+
505
+ def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
506
+ model_cfg.image_processor = image_processor
507
+ new_images = [
508
+ process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
509
+ for image in images
510
+ ]
511
+
512
+ if all(x.shape == new_images[0].shape for x in new_images):
513
+ if len(new_images[0].shape) == 4:
514
+ new_images = torch.cat(new_images, dim=0)
515
+ elif len(new_images[0].shape) == 3:
516
+ new_images = torch.stack(new_images, dim=0)
517
+ else:
518
+ raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
519
+ else:
520
+ raise ValueError("The shape of images in new_images is different!")
521
+ return new_images
522
+
523
+
524
+ def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
525
+ return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
526
+
527
+
528
+ def is_gemma_tokenizer(tokenizer):
529
+ return "gemma" in tokenizer.__class__.__name__.lower()
530
+
531
+
532
+ def get_model_name_from_path(model_path):
533
+ model_path = model_path.strip("/")
534
+ model_paths = model_path.split("/")
535
+ if model_paths[-1].startswith("checkpoint-"):
536
+ return model_paths[-2] + "_" + model_paths[-1]
537
+ else:
538
+ return model_paths[-1]
539
+
540
+
541
+ class KeywordsStoppingCriteria(StoppingCriteria):
542
+ def __init__(self, keywords, tokenizer, input_ids):
543
+ self.keywords = keywords
544
+ self.keyword_ids = []
545
+ self.max_keyword_len = 0
546
+ for keyword in keywords:
547
+ cur_keyword_ids = tokenizer(keyword).input_ids
548
+ if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
549
+ cur_keyword_ids = cur_keyword_ids[1:]
550
+ if len(cur_keyword_ids) > self.max_keyword_len:
551
+ self.max_keyword_len = len(cur_keyword_ids)
552
+ self.keyword_ids.append(torch.tensor(cur_keyword_ids))
553
+ self.tokenizer = tokenizer
554
+ self.start_len = input_ids.shape[1]
555
+
556
+ def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
557
+ offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
558
+ self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
559
+ for keyword_id in self.keyword_ids:
560
+ if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
561
+ return True
562
+ outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
563
+ for keyword in self.keywords:
564
+ if keyword in outputs:
565
+ return True
566
+ return False
567
+
568
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
569
+ outputs = []
570
+ for i in range(output_ids.shape[0]):
571
+ outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
572
+ return all(outputs)
modeling_vila.py ADDED
@@ -0,0 +1,1024 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import shutil
2
+ import copy
3
+ import json
4
+ import logging
5
+ import math
6
+ import os
7
+ import os.path
8
+ import os.path as osp
9
+ import warnings
10
+ from abc import ABC
11
+ from collections import OrderedDict, defaultdict, deque
12
+ from copy import deepcopy
13
+ from itertools import chain
14
+ from threading import Thread
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.distributed as dist
20
+ import torch.nn.functional as F
21
+ import torchvision
22
+ from einops import rearrange
23
+ from PIL import Image
24
+
25
+ from transformers import (
26
+ AutoConfig,
27
+ AutoModel,
28
+ AutoProcessor,
29
+ AutoTokenizer,
30
+ GenerationConfig,
31
+ LogitsProcessor,
32
+ PretrainedConfig,
33
+ PreTrainedModel,
34
+ Qwen2Config,
35
+ Qwen2ForCausalLM,
36
+ Qwen2PreTrainedModel,
37
+ TextIteratorStreamer
38
+ )
39
+ from transformers.modeling_utils import ContextManagers, no_init_weights
40
+ from transformers.modeling_outputs import CausalLMOutputWithPast
41
+
42
+ from .base_projector import MultimodalProjector, MultimodalProjectorConfig
43
+ from .builder import build_llm_and_tokenizer
44
+ from .configuration_vila import VILAConfig
45
+ from .media_encoder import BasicImageEncoder, BasicVideoEncoder
46
+ from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
47
+ from .utils import get_model_config
48
+ from .media import extract_media
49
+ from .mm_utils import process_image, process_images
50
+ from .tokenizer_utils import tokenize_conversation
51
+ from .constants import *
52
+ from .conversation import default_conversation, SeparatorStyle
53
+
54
+ # from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
55
+ # quick hack for remote code
56
+ def get_pg_manager():
57
+ return None
58
+
59
+ def get_model_weights_dtype(model: nn.Module):
60
+ pass
61
+
62
+
63
+ def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
64
+ if model_type_or_path is None:
65
+ return None
66
+ ## load from pretrained model
67
+ if config.resume_path:
68
+ assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!"
69
+ return MultimodalProjector.from_pretrained(model_type_or_path, config)
70
+ ## build from scratch
71
+ else:
72
+ mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
73
+ mm_projector = MultimodalProjector(mm_projector_cfg, config)
74
+ return mm_projector
75
+
76
+
77
+ def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
78
+ ## skip vision tower instantiation
79
+ if model_name_or_path is None:
80
+ return None
81
+
82
+ vision_tower_arch = None
83
+ if config.resume_path and "radio" not in model_name_or_path:
84
+ assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!"
85
+ vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
86
+ vision_tower_arch = vision_tower_cfg.architectures[0].lower()
87
+ vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path
88
+
89
+ use_s2 = getattr(config, "s2", False)
90
+ use_dynamic_s2 = getattr(config, "dynamic_s2", False)
91
+
92
+ if "siglip" in vision_tower_name:
93
+ if use_dynamic_s2:
94
+ vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config)
95
+ elif use_s2:
96
+ vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
97
+ else:
98
+ vision_tower = SiglipVisionTower(model_name_or_path, config)
99
+ else:
100
+ raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}")
101
+
102
+ config.mm_hidden_size = (
103
+ vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size
104
+ )
105
+ return vision_tower
106
+
107
+
108
+ class VILAPretrainedModel(PreTrainedModel):
109
+ config_class = VILAConfig
110
+ main_input_name = "input_embeds"
111
+ supports_gradient_checkpointing = True
112
+ _supports_flash_attn_2 = True
113
+
114
+ def __init__(self, config: VILAConfig, *args, **kwargs):
115
+ super().__init__(config)
116
+ self.config = config
117
+ cfgs = get_model_config(config)
118
+ if len(cfgs) == 3:
119
+ llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
120
+ else:
121
+ raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")
122
+
123
+ # loading on cpu by default
124
+ device_map = kwargs.get("device_map", "cpu")
125
+ self.mm_projector = build_mm_projector(mm_projector_cfg, config)
126
+ self.vision_tower = build_vision_tower(vision_tower_cfg, config)
127
+ if "auto" in device_map or "cuda" in device_map:
128
+ self.mm_projector = self.mm_projector.cuda()
129
+ self.vision_tower = self.vision_tower.cuda()
130
+ # set device_map auto can autoamtically shard llm to different devices
131
+ self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
132
+
133
+ self.encoders = {
134
+ "image": BasicImageEncoder(self),
135
+ "video": BasicVideoEncoder(self)
136
+ }
137
+
138
+ self.post_config()
139
+ self.is_loaded = True
140
+
141
+ assert (
142
+ self.llm is not None or self.vision_tower is not None or self.mm_projector is not None
143
+ ), "At least one of the components must be instantiated."
144
+
145
+ @classmethod
146
+ def convert_vila_dev_ckpt_to_remote(self, model_path: str, output_dir:str = None, *model_args, **kwargs):
147
+ # assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
148
+ from huggingface_hub import HfApi, snapshot_download
149
+
150
+ if os.path.isdir(model_path):
151
+ model_path = model_path
152
+ api = HfApi()
153
+ if api.repo_exists(model_path):
154
+ model_path = snapshot_download(model_path, local_dir=output_dir)
155
+ print("downloading HF model to", model_path)
156
+
157
+ cfg_path = os.path.join(model_path, "config.json")
158
+ config = json.load(open(cfg_path))
159
+ config["version"] = "2.0" # nvila tag
160
+ config["architectures"] = ["VILAForCasualLM"]
161
+ config["auto_map"] = {
162
+ "AutoConfig": "modeling_vila.VILAConfig",
163
+ "AutoModel": "modeling_vila.VILAForCasualLM",
164
+ "AutoModelForCausalLM": "modeling_vila.VILAForCasualLM"
165
+ }
166
+ config["model_type"] = "vila"
167
+ json.dump(config, open(cfg_path, "w"), indent=2)
168
+ self.copy_remote_py_files(model_path)
169
+
170
+ @classmethod
171
+ def copy_remote_py_files(cls, output_dir):
172
+ ## copy .py and REAMDE for next loading remote code
173
+ current_file_path = os.path.abspath(__file__)
174
+ current_folder = os.path.dirname(current_file_path)
175
+ for file_name in os.listdir(current_folder):
176
+ if file_name.endswith(".py"):
177
+ full_file_name = os.path.join(current_folder, file_name)
178
+ if os.path.isfile(full_file_name):
179
+ shutil.copy(full_file_name, output_dir)
180
+ print("[HF remote code] copying", full_file_name, "to", output_dir)
181
+
182
+ def save_pretrained(self, output_dir, state_dict=None):
183
+ if state_dict is None:
184
+ # other wise fetch from deepspeed
185
+ # state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
186
+ state_dict = self.state_dict()
187
+
188
+ if getattr(self, "tokenizer", None):
189
+ self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
190
+
191
+ if self.get_llm():
192
+ print(f"saving llm to {osp.join(output_dir, 'llm')}")
193
+ self.llm.config._name_or_path = osp.join(output_dir, "llm")
194
+ llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
195
+ self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
196
+ self.config.llm_cfg = self.llm.config
197
+
198
+ if self.get_vision_tower():
199
+ print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
200
+ self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
201
+ vision_tower_state_dict = OrderedDict(
202
+ {k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
203
+ )
204
+ self.vision_tower.vision_tower.save_pretrained(
205
+ os.path.join(output_dir, "vision_tower"),
206
+ state_dict=vision_tower_state_dict,
207
+ )
208
+ self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
209
+ self.config.vision_tower_cfg = self.vision_tower.config
210
+ if hasattr(self.config.vision_tower_cfg, "auto_map"):
211
+ if "radio" not in self.get_vision_tower().__class__.__name__.lower():
212
+ delattr(self.config.vision_tower_cfg, "auto_map")
213
+
214
+ if self.get_mm_projector():
215
+ print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
216
+ self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
217
+ mm_projector_state_dict = OrderedDict(
218
+ {k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
219
+ )
220
+ self.mm_projector.save_pretrained(
221
+ os.path.join(output_dir, "mm_projector"),
222
+ state_dict=mm_projector_state_dict,
223
+ )
224
+ self.config.mm_projector_cfg = self.mm_projector.config
225
+
226
+ ## update and save top-level config
227
+ self.config._name_or_path = output_dir
228
+ self.config.architectures = [self.__class__.__name__]
229
+ self.config.save_pretrained(output_dir)
230
+
231
+ ## copy .py and REAMDE for next loading remote code
232
+ self.copy_remote_py_files(output_dir)
233
+
234
+
235
+
236
+ @classmethod
237
+ def from_pretrained(
238
+ cls,
239
+ pretrained_model_name_or_path: Optional[str] = None,
240
+ *model_args,
241
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
242
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
243
+ ignore_mismatched_sizes: bool = False,
244
+ force_download: bool = False,
245
+ local_files_only: bool = False,
246
+ token: Optional[Union[str, bool]] = None,
247
+ revision: str = "main",
248
+ use_safetensors: Optional[bool] = None,
249
+ weights_only: bool = True,
250
+ **kwargs,
251
+ ):
252
+ config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
253
+ return cls._from_config(config, **kwargs)
254
+
255
+ def init_llm(self, llm_config, config, *args, **kwargs):
256
+ self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs)
257
+ # hard coded for NVILA
258
+ # variables for XGrammar
259
+ # print("DEBUG", len(self.tokenizer.added_tokens_encoder.keys()), self.tokenizer.added_tokens_encoder.keys())
260
+ NUM_EXTRA_TOKENS = len(self.tokenizer.added_tokens_encoder.keys())
261
+
262
+ # TODO: SENTINEL_TOKEN is not added, need to check with Zhijian
263
+ self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS
264
+ # XGrammar tokenizer and grammar compiler
265
+ # lazy init only when specified json output during inference
266
+ self.grammar_compiler = None
267
+
268
+ self.llm.resize_token_embeddings(len(self.tokenizer))
269
+ return self.llm, self.tokenizer
270
+
271
+ def post_config(self):
272
+ ######################################################################
273
+ # TODO: need to check dtype with jason
274
+ self.llm = self.llm.to(torch.float16)
275
+ self.mm_projector = self.mm_projector.to(torch.float16)
276
+ self.vision_tower = self.vision_tower.to(torch.float16)
277
+ ######################################################################
278
+ self.training = self.llm.training
279
+ ## configuration
280
+ if getattr(self.config, "llm_cfg", None) is None:
281
+ self.config.llm_cfg = self.llm.config
282
+ if getattr(self.config, "vision_tower_cfg", None) is None:
283
+ self.config.vision_tower_cfg = self.vision_tower.config
284
+ if getattr(self.config, "mm_projector_cfg", None) is None:
285
+ self.config.mm_projector_cfg = self.mm_projector.config
286
+
287
+ def get_llm(self):
288
+ llm = getattr(self, "llm", None)
289
+ if type(llm) is list:
290
+ llm = llm[0]
291
+ return llm
292
+
293
+ def get_lm_head(self):
294
+ lm_head = getattr(self.get_llm(), "lm_head", None)
295
+ return lm_head
296
+
297
+ def get_vision_tower(self):
298
+ vision_tower = getattr(self, "vision_tower", None)
299
+ if type(vision_tower) is list:
300
+ vision_tower = vision_tower[0]
301
+ return vision_tower
302
+
303
+ def get_mm_projector(self):
304
+ mm_projector = getattr(self, "mm_projector", None)
305
+ if type(mm_projector) is list:
306
+ mm_projector = mm_projector[0]
307
+ return mm_projector
308
+
309
+ def freezed_module_patch(self):
310
+ """
311
+ Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
312
+ """
313
+ if self.training:
314
+ if self.get_llm() and not getattr(self.config, "tune_language_model", False):
315
+ pass
316
+ # logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
317
+ if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
318
+ self.get_vision_tower().eval()
319
+ if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
320
+ self.get_mm_projector().eval()
321
+
322
+ class VILAForCasualLM(VILAPretrainedModel):
323
+ def __init__(self, config: VILAConfig, *args, **kwargs):
324
+ super().__init__(config, *args, **kwargs)
325
+
326
+ def merge_features_for_dynamic_s2(self, image_features, block_sizes):
327
+ scales = self.get_vision_tower().scales
328
+ resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx
329
+
330
+ image_features_each_image = []
331
+ new_block_sizes = []
332
+ block_cnt = 0
333
+ for block_size_each_image in block_sizes:
334
+ if block_size_each_image is None:
335
+ cur_features = image_features[block_cnt : block_cnt + 1]
336
+ cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5))
337
+ cur_features = cur_features.repeat(1, len(scales), 1, 1)
338
+ image_features_each_image.append(cur_features)
339
+ new_block_sizes.append((1, 1))
340
+ block_cnt += 1
341
+ else:
342
+ cur_features_each_scale = []
343
+ for scale in scales[:-1]:
344
+ num_blocks_this_scale = (scale // scales[0]) ** 2
345
+ cur_features_each_scale.append(
346
+ self.merge_chessboard(
347
+ image_features[block_cnt : block_cnt + num_blocks_this_scale],
348
+ num_split_h=scale // scales[0],
349
+ num_split_w=scale // scales[0],
350
+ )
351
+ ) # 1 * C * H * W
352
+ block_cnt += num_blocks_this_scale
353
+ num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
354
+ cur_features_each_scale.append(
355
+ self.merge_chessboard(
356
+ image_features[block_cnt : block_cnt + num_blocks_last_scale],
357
+ num_split_h=block_size_each_image[0],
358
+ num_split_w=block_size_each_image[1],
359
+ )
360
+ ) # 1 * C * H * W
361
+ block_cnt += num_blocks_last_scale
362
+
363
+ # resize and concat features from different scales
364
+ output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
365
+ cur_features = torch.cat(
366
+ [
367
+ F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
368
+ cur_features_each_scale[i].dtype
369
+ )
370
+ for i in range(len(cur_features_each_scale))
371
+ ],
372
+ dim=1,
373
+ )
374
+ # cur_features = rearrange(cur_features, "1 c h w -> (h w) c")
375
+
376
+ image_features_each_image.append(cur_features)
377
+
378
+ if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
379
+ new_block_sizes.append(block_size_each_image)
380
+ else:
381
+ new_block_sizes.append(
382
+ (
383
+ scales[resize_output_to_scale_idx] // scales[0],
384
+ scales[resize_output_to_scale_idx] // scales[0],
385
+ )
386
+ )
387
+
388
+ assert block_cnt == len(image_features)
389
+
390
+ return image_features_each_image, new_block_sizes
391
+
392
+ def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None):
393
+ if block_sizes is None:
394
+ block_sizes = [None] * len(images)
395
+ if getattr(self.config, "dynamic_s2", False):
396
+ image_features = self.get_vision_tower()(images)
397
+ image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)
398
+
399
+ image_features = [
400
+ self.split_chessboard(x, block_size[0], block_size[1])
401
+ for x, block_size in zip(image_features, new_block_sizes)
402
+ ] # list of B * C * H * W tensors
403
+ image_features = torch.cat(
404
+ [rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
405
+ ) # B * N * C
406
+ image_features = self.get_mm_projector()(image_features)
407
+ image_features = list(
408
+ image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
409
+ )
410
+ image_features = [
411
+ self.merge_chessboard(x, block_size[0], block_size[1])
412
+ for x, block_size in zip(image_features, new_block_sizes)
413
+ ] # list of 1 * C * H * W tensors
414
+ image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] # list of N * C tensors
415
+ if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
416
+ image_features = torch.stack(image_features, dim=0)
417
+ else:
418
+ image_features = self.get_vision_tower()(images)
419
+ image_features = self.get_mm_projector()(image_features)
420
+ return image_features
421
+
422
+ def _embed(
423
+ self,
424
+ input_ids: torch.Tensor,
425
+ media: Dict[str, List[torch.Tensor]],
426
+ media_config: Dict[str, Dict[str, Any]],
427
+ labels: Optional[torch.Tensor],
428
+ attention_mask: Optional[torch.Tensor],
429
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
430
+ labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
431
+ attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
432
+
433
+ # PROCESS_GROUP_MANAGER = get_pg_manager()
434
+ PROCESS_GROUP_MANAGER = None
435
+ if PROCESS_GROUP_MANAGER is not None:
436
+ for name in media:
437
+ self.encoders[name].end_tokens = None
438
+
439
+ # Extract text and media embeddings
440
+ text_embeds = self.llm.model.embed_tokens(input_ids)
441
+ media_embeds = self.__embed_media_tokens(media, media_config)
442
+
443
+ # This is a workaround to make sure the dummy embeddings are consumed
444
+ while media_embeds.get("dummy"):
445
+ dummy_embed = media_embeds["dummy"].popleft()
446
+ text_embeds += torch.sum(dummy_embed) * 0
447
+
448
+ # Remove padding
449
+ batch_size = labels.shape[0]
450
+ text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)]
451
+ labels = [labels[k][attention_mask[k]] for k in range(batch_size)]
452
+
453
+ # Build inverse mapping from token ID to media name
454
+ media_tokens = {}
455
+ for name, token_id in self.tokenizer.media_token_ids.items():
456
+ media_tokens[token_id] = name
457
+
458
+ # Fuse text and media embeddings
459
+ inputs_m, labels_m = [], []
460
+ for k in range(batch_size):
461
+ inputs_mk, labels_mk = [], []
462
+ pos = 0
463
+ while pos < len(labels[k]):
464
+ if input_ids[k][pos].item() in media_tokens:
465
+ end = pos + 1
466
+ name = media_tokens[input_ids[k][pos].item()]
467
+ input = media_embeds[name].popleft()
468
+ label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
469
+ else:
470
+ end = pos
471
+ while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
472
+ end += 1
473
+ input = text_embeds[k][pos:end]
474
+ label = labels[k][pos:end]
475
+ inputs_mk.append(input)
476
+ labels_mk.append(label)
477
+ pos = end
478
+ inputs_m.append(torch.cat(inputs_mk, dim=0))
479
+ labels_m.append(torch.cat(labels_mk, dim=0))
480
+ inputs, labels = inputs_m, labels_m
481
+
482
+ # Check if all media embeddings are consumed
483
+ for name in media_embeds:
484
+ if media_embeds[name]:
485
+ raise ValueError(f"Not all {name} embeddings are consumed!")
486
+
487
+ # Truncate sequences to `model_max_length` as media embeddings are inserted
488
+ inputs, labels = self.__truncate_sequence(inputs, labels)
489
+
490
+ # Pad sequences to the longest one in the batch
491
+ return self.__batchify_sequence(inputs, labels)
492
+
493
+ def __embed_media_tokens(
494
+ self,
495
+ media: Dict[str, List[torch.Tensor]],
496
+ media_config: Dict[str, Dict[str, Any]],
497
+ ) -> Dict[str, List[torch.Tensor]]:
498
+ embeds = defaultdict(deque)
499
+ for name in media:
500
+ if self.training:
501
+ # Gather metainfo of media objects from all ranks
502
+ info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
503
+ infos = list(chain(*distributed.all_gather(info)))
504
+
505
+ # The entire batch does not contain any media objects of this type.
506
+ if not infos:
507
+ continue
508
+
509
+ # Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
510
+ if media.get(name) is None or len(media[name]) == 0:
511
+ dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
512
+ embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
513
+ continue
514
+ embeds[name] = deque(self.encoders[name](media[name], media_config[name]))
515
+ return embeds
516
+
517
+ def __truncate_sequence(
518
+ self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
519
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
520
+ if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
521
+ warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
522
+ inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
523
+ labels = [label[: self.tokenizer.model_max_length] for label in labels]
524
+ return inputs, labels
525
+
526
+ def __batchify_sequence(
527
+ self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
528
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
529
+ batch_size = len(inputs)
530
+ device = inputs[0].device
531
+ hidden_size = inputs[0].shape[1]
532
+ max_length = max(inputs[k].shape[0] for k in range(batch_size))
533
+ attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)
534
+
535
+ inputs_p, labels_p = [], []
536
+ for k in range(batch_size):
537
+ size_pk = max_length - inputs[k].shape[0]
538
+ inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
539
+ labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
540
+ if self.tokenizer.padding_side == "right":
541
+ attention_mask[k, inputs[k].shape[0] :] = False
542
+ inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
543
+ labels_pk = torch.cat([labels[k], labels_pk], dim=0)
544
+ else:
545
+ attention_mask[k, : -inputs[k].shape[0]] = False
546
+ inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
547
+ labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
548
+ inputs_p.append(inputs_pk)
549
+ labels_p.append(labels_pk)
550
+
551
+ inputs = torch.stack(inputs_p, dim=0)
552
+ labels = torch.stack(labels_p, dim=0)
553
+ return inputs, labels, attention_mask
554
+
555
+ def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
556
+ # Handle sequence parallelism
557
+ PROCESS_GROUP_MANAGER = get_pg_manager()
558
+
559
+ # We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
560
+ if PROCESS_GROUP_MANAGER is not None:
561
+ sp_degree = PROCESS_GROUP_MANAGER.sp_degree
562
+ sp_rank = PROCESS_GROUP_MANAGER.sp_rank
563
+ sp_group = PROCESS_GROUP_MANAGER.sp_pg
564
+ ring_degree = PROCESS_GROUP_MANAGER.ring_degree
565
+ ring_rank = PROCESS_GROUP_MANAGER.ring_rank
566
+ ring_type = PROCESS_GROUP_MANAGER.ring_type
567
+ ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
568
+ ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank
569
+
570
+ bs, shard_seqlen = position_ids.shape
571
+ sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
572
+ dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
573
+ sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)
574
+
575
+ if sp_rank == 0:
576
+ original_start_id = 0
577
+ else:
578
+ original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
579
+ original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()
580
+
581
+ # Gather attention_mask, position_ids, labels and input_embeds
582
+ all_inputs_embeds = torch.zeros(
583
+ bs,
584
+ torch.sum(sp_seq_len_cat),
585
+ inputs_embeds.shape[-1],
586
+ dtype=inputs_embeds.dtype,
587
+ device=inputs_embeds.device,
588
+ ).contiguous()
589
+ all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
590
+ dist.barrier(group=sp_group)
591
+ dist.all_reduce(all_inputs_embeds, group=sp_group)
592
+ dist.barrier(group=sp_group)
593
+
594
+ attention_mask_list = [
595
+ torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
596
+ for i in range(sp_degree)
597
+ ]
598
+ position_ids_list = [
599
+ torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
600
+ for i in range(sp_degree)
601
+ ]
602
+ labels_list = [
603
+ torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
604
+ ]
605
+
606
+ dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
607
+ dist.all_gather(position_ids_list, position_ids, group=sp_group)
608
+ dist.all_gather(labels_list, labels, group=sp_group)
609
+
610
+ effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
611
+ effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
612
+ effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
613
+
614
+ global_attention_mask_list = []
615
+ global_position_ids_list = []
616
+ global_labels_list = []
617
+ global_inputs_embeds_list = []
618
+ for i in range(bs):
619
+ global_attention_mask_batch_list = []
620
+ global_position_ids_batch_list = []
621
+ global_labels_batch_list = []
622
+ global_inputs_embeds_batch_list = []
623
+ for j in range(sp_degree):
624
+ eff_len = effective_seqlen_batch_list[i][j]
625
+ prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0
626
+
627
+ global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
628
+ global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
629
+ global_labels_batch_list.append(labels_list[j][i, :eff_len])
630
+ global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
631
+ global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
632
+ global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
633
+ global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
634
+ global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
635
+
636
+ global_attention_mask = torch.nn.utils.rnn.pad_sequence(
637
+ global_attention_mask_list, batch_first=True, padding_value=False
638
+ )
639
+ global_position_ids = torch.nn.utils.rnn.pad_sequence(
640
+ global_position_ids_list, batch_first=True, padding_value=-1
641
+ )
642
+ global_labels = torch.nn.utils.rnn.pad_sequence(
643
+ global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
644
+ )
645
+ global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
646
+ global_inputs_embeds_list, batch_first=True, padding_value=0
647
+ )
648
+
649
+ # Re-shard the inputs
650
+ if ring_degree > 1:
651
+ total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
652
+ new_seqlen_per_rank = total_effective_seqlen // sp_degree
653
+ assert torch.all(
654
+ total_effective_seqlen % sp_degree == 0
655
+ ), "total_effective_seqlen must be divisible by sp_degree"
656
+
657
+ max_new_seqlen = torch.max(new_seqlen_per_rank).item()
658
+
659
+ new_attention_mask = torch.zeros(
660
+ (bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
661
+ )
662
+ new_position_ids = torch.zeros(
663
+ (bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
664
+ )
665
+ new_labels = torch.full(
666
+ (bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
667
+ )
668
+ new_inputs_embeds = torch.zeros(
669
+ (bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
670
+ dtype=global_inputs_embeds.dtype,
671
+ device=global_inputs_embeds.device,
672
+ )
673
+
674
+ if ring_type == "ring_varlen":
675
+ for i in range(bs):
676
+ start_idx = new_seqlen_per_rank[i] * sp_rank
677
+ end_idx = start_idx + new_seqlen_per_rank[i]
678
+ new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
679
+ new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
680
+ new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
681
+ new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
682
+ i, start_idx:end_idx, :
683
+ ]
684
+ elif ring_type == "zigzag_ring_varlen":
685
+ chunk_size = total_effective_seqlen // (2 * sp_degree)
686
+ for i in range(bs):
687
+ # Zigzag pattern indices
688
+ if sp_degree == ring_degree:
689
+ forward_rank_idx = sp_rank
690
+ backward_rank_idx = 2 * sp_degree - sp_rank - 1
691
+ else:
692
+ ulysses_offset = ulysses_rank * ring_degree * 2
693
+ forward_rank_idx = ring_rank + ulysses_offset
694
+ backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset
695
+
696
+ # Calculate start and end indices for the forward and backward zigzag
697
+ start_idx_fwd = forward_rank_idx * chunk_size[i]
698
+ end_idx_fwd = start_idx_fwd + chunk_size[i]
699
+
700
+ start_idx_bwd = backward_rank_idx * chunk_size[i]
701
+ end_idx_bwd = start_idx_bwd + chunk_size[i]
702
+
703
+ # Fill new tensors with zigzag data
704
+ new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
705
+ new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
706
+ i, start_idx_bwd:end_idx_bwd
707
+ ]
708
+
709
+ new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
710
+ new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
711
+ i, start_idx_bwd:end_idx_bwd
712
+ ]
713
+
714
+ new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
715
+ new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]
716
+
717
+ new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
718
+ new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
719
+ i, start_idx_bwd:end_idx_bwd, :
720
+ ]
721
+ else:
722
+ raise ValueError(f"Invalid ring_type: {ring_type}")
723
+ else:
724
+ global_seq_len = global_attention_mask.shape[-1]
725
+ seq_len_sharded = global_seq_len // sp_degree
726
+ start_idx_reshard = seq_len_sharded * sp_rank
727
+ end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len
728
+
729
+ new_attention_mask = torch.narrow(
730
+ global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
731
+ )
732
+ new_position_ids = torch.narrow(
733
+ global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
734
+ )
735
+ new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
736
+ new_inputs_embeds = torch.narrow(
737
+ global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
738
+ )
739
+
740
+ return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
741
+
742
+ device = inputs_embeds.device
743
+ batch_size = inputs_embeds.shape[0]
744
+ seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]
745
+
746
+ # Pack all sequences together
747
+ inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
748
+ attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
749
+ position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
750
+ labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]
751
+
752
+ # Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
753
+ inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
754
+ attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
755
+ position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
756
+ labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))
757
+
758
+ # Mask the first token of each sequence to avoid contamination
759
+ for label in labels_p:
760
+ label[0] = IGNORE_INDEX
761
+
762
+ # Batch the data
763
+ inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
764
+ attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
765
+ position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
766
+ labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)
767
+
768
+ if hasattr(
769
+ self, "pad_to_multiple_of"
770
+ ): # related to quantization, please refer to ModelArguments for more information.
771
+ assert len(labels_p.shape) == 2
772
+ batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
773
+ hidden_size = inputs_embeds_p.shape[-1]
774
+
775
+ if max_length % self.pad_to_multiple_of != 0:
776
+ max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
777
+ difference = max_length - cur_length
778
+
779
+ inputs_embeds_p = torch.cat(
780
+ (
781
+ inputs_embeds_p,
782
+ torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
783
+ ),
784
+ dim=1,
785
+ )
786
+ labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
787
+ attention_mask_p = torch.cat(
788
+ (
789
+ attention_mask_p,
790
+ torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
791
+ ),
792
+ dim=1,
793
+ )
794
+ position_ids_p = torch.cat(
795
+ (position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
796
+ )
797
+
798
+ return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p
799
+
800
+ def get_xgr_logits_processor(self, response_format) -> List[LogitsProcessor]:
801
+ raise NotImplementedError("This method is not implemented for VILA model.")
802
+ # Convert response format to logits processor
803
+ import xgrammar as xgr
804
+
805
+ logging.info("[XGrammar] Compiling grammar for contrained output")
806
+
807
+ if self.grammar_compiler is None:
808
+ # logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}")
809
+ self.grammar_compiler = xgr.GrammarCompiler(
810
+ xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size)
811
+ )
812
+
813
+ if response_format.type == "json_schema":
814
+ compiled_grammar = self.grammar_compiler.compile_json_schema(
815
+ response_format.json_schema.schema_,
816
+ indent=2,
817
+ )
818
+ else:
819
+ compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar()
820
+
821
+ return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)]
822
+
823
+ def forward(
824
+ self,
825
+ input_ids: torch.LongTensor = None,
826
+ media: Optional[Dict[str, List[torch.Tensor]]] = None,
827
+ images: Optional[torch.FloatTensor] = None,
828
+ media_config: Optional[List] = None,
829
+ attention_mask: Optional[torch.Tensor] = None,
830
+ position_ids: Optional[torch.LongTensor] = None,
831
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
832
+ inputs_embeds: Optional[torch.FloatTensor] = None,
833
+ labels: Optional[torch.LongTensor] = None,
834
+ packing: bool = True,
835
+ force_packing: bool = False,
836
+ seqlens_in_batch: Optional[torch.LongTensor] = None,
837
+ dpo_forward: bool = False,
838
+ **kwargs,
839
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
840
+ self.freezed_module_patch()
841
+
842
+ if images is not None:
843
+ if media is not None:
844
+ raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
845
+ print("The 'images' argument is deprecated. Please use 'media' instead.")
846
+ media = {"image": images}
847
+
848
+ if media_config is None:
849
+ media_config = defaultdict(dict)
850
+
851
+ if inputs_embeds is None:
852
+ inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask)
853
+
854
+ if force_packing or (packing and self.training and not dpo_forward):
855
+ if seqlens_in_batch is None:
856
+ seqlens_in_batch = torch.sum(attention_mask, dim=1)
857
+ set_seqlens_in_batch(seqlens_in_batch)
858
+
859
+ (inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
860
+ inputs_embeds, attention_mask, position_ids, labels
861
+ )
862
+
863
+ outputs = self.llm(
864
+ inputs_embeds=inputs_embeds,
865
+ attention_mask=attention_mask,
866
+ position_ids=position_ids,
867
+ past_key_values=past_key_values,
868
+ labels=labels,
869
+ **kwargs,
870
+ )
871
+
872
+ if self.training and getattr(self.config, "time_token_ids", []):
873
+ outputs.loss = soft_cross_entropy(
874
+ outputs.logits,
875
+ labels,
876
+ soft_tokens=self.config.time_token_ids,
877
+ std=self.config.soft_ce_std,
878
+ )
879
+
880
+ if dpo_forward:
881
+ return outputs.logits, labels
882
+
883
+ return outputs
884
+ @torch.inference_mode()
885
+ def generate(
886
+ self,
887
+ input_ids: Optional[torch.FloatTensor] = None,
888
+ media: Optional[Dict[str, List[torch.Tensor]]] = None,
889
+ media_config: Dict[str, Dict[str, Any]] = None,
890
+ attention_mask: Optional[torch.LongTensor] = None,
891
+ **generation_kwargs,
892
+ ):
893
+ inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
894
+ return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)
895
+
896
+ @torch.inference_mode()
897
+ def generate_content(
898
+ self,
899
+ prompt: Union[str, List],
900
+ generation_config: Optional[GenerationConfig] = None,
901
+ response_format = None,
902
+ ) -> str:
903
+ # TODO(zhijianl): Support directly taking conversation as input
904
+ conversation = [{"from": "human", "value": prompt}]
905
+
906
+ # Convert response format to logits processor
907
+ if response_format:
908
+ xgr_logits_processor = self.get_xgr_logits_processor(response_format)
909
+ else:
910
+ xgr_logits_processor = None
911
+
912
+ # Extract media from the conversation
913
+
914
+ # TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
915
+ media = extract_media(conversation, self.config)
916
+
917
+ # Process media
918
+ media_config = defaultdict(dict)
919
+ for name in media:
920
+ if name == "image":
921
+ if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
922
+ self.config.image_processor = self.vision_tower.image_processor
923
+ if self.config.image_aspect_ratio == "dynamic":
924
+ images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
925
+ conversation[0]["value"] = conversation[0]["value"].replace(
926
+ DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
927
+ )
928
+ else:
929
+ if type(self.config.s2_scales) is str:
930
+ self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
931
+ images, block_sizes = process_image(
932
+ media["image"][0], self.config, None, enable_dynamic_s2=True
933
+ )
934
+ images = images.half()
935
+ media_config[name]["block_sizes"] = [block_sizes]
936
+ else:
937
+ images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
938
+ media[name] = [image for image in images]
939
+ elif name == "video":
940
+ if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1:
941
+ media[name] = [
942
+ process_images(
943
+ images,
944
+ self.vision_tower.image_processor,
945
+ self.config,
946
+ enable_dynamic_res=True,
947
+ max_tiles=self.config.video_max_tiles,
948
+ ).half()
949
+ for images in media[name]
950
+ ]
951
+ elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1:
952
+ self.config.image_processor = self.vision_tower.image_processor
953
+ if type(self.config.s2_scales) is str:
954
+ self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
955
+ media[name] = [
956
+ torch.cat(
957
+ [
958
+ process_image(
959
+ image,
960
+ self.config,
961
+ None,
962
+ enable_dynamic_s2=True,
963
+ max_tiles=self.config.video_max_tiles,
964
+ )[0].half()
965
+ for image in images
966
+ ]
967
+ )
968
+ for images in media[name]
969
+ ]
970
+ else:
971
+ media[name] = [
972
+ process_images(images, self.vision_tower.image_processor, self.config).half()
973
+ for images in media[name]
974
+ ]
975
+ else:
976
+ raise ValueError(f"Unsupported media type: {name}")
977
+
978
+ # Tokenize the conversation
979
+ input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
980
+
981
+ # Set up the generation config
982
+ generation_config = generation_config or self.default_generation_config
983
+
984
+ # Generate the response
985
+ try:
986
+ output_ids = self.generate(
987
+ input_ids=input_ids,
988
+ media=media,
989
+ media_config=media_config,
990
+ generation_config=generation_config,
991
+ logits_processor=xgr_logits_processor, # structured generation
992
+ )
993
+ except ValueError:
994
+ if not generation_config.do_sample:
995
+ raise
996
+ # FIXME(zhijianl): This is a temporary workaround for the sampling issue
997
+ logging.warning("Generation failed with sampling, retrying with greedy decoding.")
998
+ generation_config.do_sample = False
999
+ output_ids = self.generate(
1000
+ input_ids=input_ids,
1001
+ media=media,
1002
+ media_config=media_config,
1003
+ generation_config=generation_config,
1004
+ logits_processor=xgr_logits_processor,
1005
+ )
1006
+
1007
+ # Decode the response
1008
+ response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
1009
+ return response
1010
+
1011
+ @property
1012
+ def default_generation_config(self) -> GenerationConfig:
1013
+ generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
1014
+ if self.tokenizer.eos_token_id is None:
1015
+ raise ValueError("Tokenizer must have an EOS token")
1016
+ if generation_config.max_length == GenerationConfig().max_length:
1017
+ generation_config.max_length = self.tokenizer.model_max_length
1018
+ if generation_config.pad_token_id is None:
1019
+ generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
1020
+ if generation_config.bos_token_id is None:
1021
+ generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
1022
+ if generation_config.eos_token_id is None:
1023
+ generation_config.eos_token_id = self.tokenizer.eos_token_id
1024
+ return generation_config
siglip_encoder.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+ from accelerate.hooks import add_hook_to_module
21
+ from einops import rearrange
22
+ from s2wrapper import forward as multiscale_forward
23
+ from transformers import AutoConfig, PreTrainedModel
24
+ from transformers.image_processing_utils import BaseImageProcessor
25
+ from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
26
+ from transformers.models.siglip import SiglipVisionModel
27
+ from transformers import PretrainedConfig, SiglipImageProcessor
28
+
29
+ class VisionTower(nn.Module):
30
+ def __init__(self, vision_tower, args, delay_load=False):
31
+ super().__init__()
32
+
33
+ self.is_loaded = False
34
+
35
+ self.vision_tower_name = vision_tower
36
+ self.select_layer = getattr(args, "mm_vision_select_layer", -2)
37
+ self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
38
+
39
+ self.cfg_only = None
40
+
41
+ def feature_select(self, image_forward_outs):
42
+ image_features = image_forward_outs.hidden_states[self.select_layer]
43
+ if self.select_feature == "patch":
44
+ image_features = image_features[:, 1:]
45
+ elif self.select_feature == "cls_patch":
46
+ image_features = image_features
47
+ else:
48
+ raise ValueError(f"Unexpected select feature: {self.select_feature}")
49
+ return image_features
50
+
51
+ def _maybe_resize_pos_embeds(
52
+ self,
53
+ model: PreTrainedModel,
54
+ image_processor: BaseImageProcessor,
55
+ resolution: int = -1,
56
+ interpolate_mode: str = "linear",
57
+ ):
58
+ if resolution in [model.config.image_size, -1]:
59
+ return
60
+ print(
61
+ f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
62
+ )
63
+ embeddings = model.vision_model.embeddings
64
+ patch_size = embeddings.patch_size
65
+ num_new_tokens = int((resolution // patch_size) ** 2)
66
+
67
+ old_embeddings = embeddings.position_embedding
68
+ match interpolate_mode:
69
+ case "linear":
70
+ ## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
71
+ ## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
72
+ import torch
73
+ import torch.nn as nn
74
+
75
+ if is_deepspeed_zero3_enabled():
76
+ import deepspeed
77
+
78
+ with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None):
79
+ old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
80
+ else:
81
+ old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
82
+ new_embeddings = nn.Embedding(
83
+ num_new_tokens,
84
+ old_embedding_dim,
85
+ dtype=old_embeddings.weight.dtype,
86
+ device=old_embeddings.weight.device,
87
+ )
88
+ mapped_indices = (
89
+ torch.arange(num_new_tokens).to(old_embeddings.weight.device)
90
+ / (num_new_tokens - 1)
91
+ * (old_num_tokens - 1)
92
+ )
93
+ floor_indices = torch.clamp(mapped_indices.floor().long(), min=0, max=old_num_tokens - 1)
94
+ ceil_indices = torch.clamp(mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1)
95
+ if is_deepspeed_zero3_enabled():
96
+ params = [old_embeddings.weight, new_embeddings.weight]
97
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
98
+ interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
99
+ ceil_indices, :
100
+ ] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
101
+ else:
102
+ interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
103
+ ceil_indices, :
104
+ ] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
105
+ new_embeddings.weight.data = interpolated_embeds
106
+ case _:
107
+ raise NotImplementedError
108
+
109
+ if hasattr(old_embeddings, "_hf_hook"):
110
+ hook = old_embeddings._hf_hook
111
+ add_hook_to_module(new_embeddings, hook)
112
+ new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
113
+ ## update vision encoder's configurations
114
+ model.config.image_size = resolution
115
+ if hasattr(image_processor, "crop_size"):
116
+ # CLIP vision tower
117
+ image_processor.crop_size = resolution
118
+ else:
119
+ # SIGLIP vision tower
120
+ assert hasattr(image_processor, "size")
121
+ image_processor.size = {"height": resolution, "width": resolution}
122
+ ## TODO define a '_reinitialize' method for VisionTower
123
+ embeddings.position_embedding = new_embeddings
124
+ embeddings.image_size = resolution
125
+ embeddings.num_patches = embeddings.num_positions = num_new_tokens
126
+ embeddings.position_ids = (
127
+ torch.arange(embeddings.num_positions).expand((1, -1)).to(old_embeddings.weight.device)
128
+ )
129
+
130
+ def forward(self, images):
131
+ if type(images) is list:
132
+ image_features = []
133
+ for image in images:
134
+ image_forward_out = self.vision_tower(
135
+ image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
136
+ output_hidden_states=True,
137
+ )
138
+ image_feature = self.feature_select(image_forward_out).to(image.dtype)
139
+ image_features.append(image_feature)
140
+ else:
141
+ image_forward_outs = self.vision_tower(
142
+ images.to(device=self.device, dtype=self.dtype),
143
+ output_hidden_states=True,
144
+ )
145
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
146
+
147
+ return image_features
148
+
149
+
150
+ @property
151
+ def dummy_feature(self):
152
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
153
+
154
+ @property
155
+ def dtype(self):
156
+ return self.vision_tower.dtype
157
+
158
+ @property
159
+ def device(self):
160
+ return self.vision_tower.device
161
+
162
+ @property
163
+ def config(self):
164
+ if self.is_loaded:
165
+ return self.vision_tower.config
166
+ else:
167
+ return self.cfg_only
168
+
169
+ @property
170
+ def hidden_size(self):
171
+ return self.config.hidden_size
172
+
173
+ @property
174
+ def num_patches(self):
175
+ return (self.config.image_size // self.config.patch_size) ** 2
176
+
177
+
178
+ class VisionTowerS2(VisionTower):
179
+ def __init__(self, vision_tower, args, delay_load=False):
180
+ super().__init__(vision_tower, args, delay_load)
181
+
182
+ self.scales = list(map(int, args.s2_scales.split(",")))
183
+ self.scales.sort()
184
+ self.max_split_size = args.s2_max_split_size
185
+ self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
186
+
187
+ def forward_feature(self, images):
188
+ image_forward_outs = self.vision_tower(
189
+ images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
190
+ )
191
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
192
+ return image_features
193
+
194
+ def forward(self, images):
195
+ if type(images) is list:
196
+ image_feature = []
197
+ for image in images:
198
+ image_feature = multiscale_forward(
199
+ self.forward_feature,
200
+ image.unsqueeze(0),
201
+ img_sizes=self.scales,
202
+ max_split_size=self.max_split_size,
203
+ resize_output_to_idx=self.resize_output_to_scale_idx,
204
+ )
205
+ image_features.append(image_feature)
206
+ else:
207
+ image_features = multiscale_forward(
208
+ self.forward_feature,
209
+ images,
210
+ img_sizes=self.scales,
211
+ max_split_size=self.max_split_size,
212
+ resize_output_to_idx=self.resize_output_to_scale_idx,
213
+ )
214
+
215
+ return image_features
216
+
217
+ @property
218
+ def hidden_size(self):
219
+ return self.config.hidden_size * len(self.scales)
220
+
221
+
222
+ class VisionTowerDynamicS2(VisionTower):
223
+ def __init__(self, vision_tower, args, delay_load=False):
224
+ super().__init__(vision_tower, args, delay_load)
225
+
226
+ self.scales = list(map(int, args.s2_scales.split(",")))
227
+ self.scales.sort()
228
+ self.max_split_size = args.s2_max_split_size
229
+ self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
230
+
231
+ def forward_feature(self, images):
232
+ image_forward_outs = self.vision_tower(
233
+ images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
234
+ )
235
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
236
+ return image_features
237
+
238
+ def forward(self, images):
239
+ assert type(images) is not list
240
+ image_features = self.forward_feature(images)
241
+
242
+ return image_features
243
+
244
+ @property
245
+ def hidden_size(self):
246
+ return self.config.hidden_size * len(self.scales)
247
+
248
+
249
+ class SiglipVisionTower(VisionTower):
250
+ def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
251
+ super().__init__(model_name_or_path, config)
252
+ # TODO(ligengl): why pass config here leading to errors?
253
+ self.vision_tower = SiglipVisionModel.from_pretrained(
254
+ model_name_or_path,
255
+ attn_implementation=config._attn_implementation,
256
+ torch_dtype=eval(config.model_dtype),
257
+ )
258
+ self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
259
+ self.is_loaded = True
260
+
261
+
262
+ class SiglipVisionTowerS2(VisionTowerS2):
263
+ def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
264
+ super().__init__(model_name_or_path, config)
265
+ self.vision_tower = SiglipVisionModel.from_pretrained(
266
+ model_name_or_path,
267
+ attn_implementation=config._attn_implementation,
268
+ torch_dtype=eval(config.model_dtype),
269
+ )
270
+ self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
271
+ # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
272
+ self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1]
273
+ self.is_loaded = True
274
+
275
+
276
+ class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2):
277
+ def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
278
+ super().__init__(model_name_or_path, config)
279
+ self.vision_tower = SiglipVisionModel.from_pretrained(
280
+ model_name_or_path,
281
+ attn_implementation="flash_attention_2",
282
+ torch_dtype=eval(config.model_dtype),
283
+ )
284
+ self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
285
+ # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
286
+ self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0]
287
+ self.is_loaded = True
tokenizer_utils.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ from typing import Any, Dict, List, Optional, Sequence
18
+
19
+ import torch
20
+ import transformers
21
+
22
+ from .conversation import default_conversation, SeparatorStyle
23
+ from .mm_utils import tokenizer_image_token
24
+ from .constants import IGNORE_INDEX, SENTINEL_TOKEN
25
+
26
+ # __all__ = [
27
+ # "tokenize_conversation",
28
+ # "preprocess_conversation",
29
+ # "infer_stop_tokens",
30
+ # ]
31
+
32
+ DUMMY_CONVERSATION = [
33
+ {"from": "human", "value": "question"},
34
+ {"from": "gpt", "value": "answer"},
35
+ ] * 10
36
+
37
+
38
+ def tokenize_conversation_legacy(
39
+ messages: Sequence[Dict[str, str]],
40
+ tokenizer: transformers.PreTrainedTokenizer,
41
+ add_generation_prompt: bool = False,
42
+ overrides: Optional[Dict[str, str]] = None,
43
+ no_system_prompt: bool = False,
44
+ ) -> torch.Tensor:
45
+ conv = default_conversation.copy()
46
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
47
+
48
+ if no_system_prompt:
49
+ conv.system = ""
50
+
51
+ # Skip the first message if it is not from human
52
+ if messages[0]["from"] != "human":
53
+ messages = messages[1:]
54
+
55
+ # Add a generation prompt if needed
56
+ if add_generation_prompt:
57
+ messages.append({"from": "gpt", "value": None})
58
+
59
+ conv.messages = []
60
+ for turn, message in enumerate(messages):
61
+ role = roles[message["from"]]
62
+ assert role == conv.roles[turn % 2]
63
+ if overrides is not None and message["from"] in overrides:
64
+ conv.append_message(role, overrides[message["from"]])
65
+ else:
66
+ conv.append_message(role, message["value"])
67
+
68
+ return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")
69
+
70
+
71
+ def tokenize_conversation(
72
+ messages: Sequence[Dict[str, str]],
73
+ tokenizer: transformers.PreTrainedTokenizer,
74
+ add_generation_prompt: bool = False,
75
+ overrides: Optional[Dict[str, str]] = None,
76
+ no_system_prompt: bool = False,
77
+ ) -> torch.Tensor:
78
+ # Normalize the conversation before tokenization
79
+ for message in messages:
80
+ message["value"] = message["value"].strip()
81
+
82
+ if default_conversation.sep_style != SeparatorStyle.AUTO:
83
+ return tokenize_conversation_legacy(
84
+ messages,
85
+ tokenizer,
86
+ add_generation_prompt=add_generation_prompt,
87
+ overrides=overrides,
88
+ no_system_prompt=no_system_prompt,
89
+ )
90
+
91
+ conversation = []
92
+ for m in messages:
93
+ message = {}
94
+ if m["from"] == "human":
95
+ message["role"] = "user"
96
+ elif m["from"] == "gpt":
97
+ message["role"] = "assistant"
98
+ else:
99
+ raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")
100
+
101
+ message["content"] = m["value"]
102
+ if overrides is not None and m["from"] in overrides:
103
+ message["content"] = overrides[m["from"]]
104
+ conversation.append(message)
105
+
106
+ if no_system_prompt:
107
+ conversation = [{"role": "system", "content": ""}] + conversation
108
+
109
+ text = tokenizer.apply_chat_template(
110
+ conversation,
111
+ add_generation_prompt=add_generation_prompt,
112
+ tokenize=False,
113
+ )
114
+ return tokenizer_image_token(text, tokenizer, return_tensors="pt")
115
+
116
+
117
+ def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
118
+ if not hasattr(tokenizer, "sentinel_token"):
119
+ tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
120
+ tokenizer.sentinel_token = SENTINEL_TOKEN
121
+ tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)
122
+
123
+
124
+ def preprocess_conversation(
125
+ conversation: Sequence[Dict[str, str]],
126
+ tokenizer: transformers.PreTrainedTokenizer,
127
+ no_system_prompt: bool = False,
128
+ retried: bool = False,
129
+ ) -> Dict[str, Any]:
130
+ inputs = tokenize_conversation(conversation, tokenizer, no_system_prompt=no_system_prompt)
131
+ labels = torch.ones_like(inputs) * IGNORE_INDEX
132
+
133
+ # Generate the template by replacing the assistant's response with a sentinel.
134
+ _maybe_add_sentinel_token(tokenizer)
135
+ template = tokenize_conversation(
136
+ conversation, tokenizer, overrides={"gpt": SENTINEL_TOKEN}, no_system_prompt=no_system_prompt
137
+ )
138
+
139
+ # Remove sentinel tokens from the template.
140
+ mask = torch.ones_like(template, dtype=torch.bool)
141
+ for k in range(template.size(0) - 1):
142
+ if template[k] == tokenizer.sentinel_token_id:
143
+ mask[k : k + 2] = False
144
+ # NOTE(zhijianl): This is to handle the corner case where there is an empty token before the sentinel token.
145
+ if k > 0 and retried:
146
+ mask[k - 1] = False
147
+ template = template[mask]
148
+
149
+ # Match the tokenized conversation with the template (with no assistant's response).
150
+ # Every token that is not matched will be included in the label for training.
151
+ p = 0
152
+ for k in range(inputs.size(0)):
153
+ if p < template.size(0) and inputs[k] == template[p]:
154
+ p += 1
155
+ else:
156
+ labels[k] = inputs[k]
157
+
158
+ # Mask all tokens in the label if the template is not fully matched.
159
+ if p < template.size(0):
160
+ if not retried:
161
+ return preprocess_conversation(
162
+ conversation,
163
+ tokenizer,
164
+ no_system_prompt=no_system_prompt,
165
+ retried=True,
166
+ )
167
+ print(f"Failed to process the conversation: '{conversation}'. All tokens will be masked in the label.")
168
+ labels[:] = IGNORE_INDEX
169
+
170
+ return {"input_ids": inputs, "labels": labels}
171
+
172
+
173
+ def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
174
+ _maybe_add_sentinel_token(tokenizer)
175
+ template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})
176
+
177
+ stop_tokens = {tokenizer.eos_token}
178
+ for k in range(template.size(0) - 1):
179
+ if template[k] == tokenizer.sentinel_token_id:
180
+ stop_token = tokenizer.decode(template[k + 1])
181
+ stop_tokens.add(stop_token)
182
+ return list(stop_tokens)
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
utils.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+ # This file is modified from https://github.com/haotian-liu/LLaVA/
17
+ import os
18
+ import os.path as osp
19
+
20
+ from huggingface_hub import repo_exists, snapshot_download
21
+ from huggingface_hub.utils import HFValidationError, validate_repo_id
22
+ from transformers import AutoConfig, PretrainedConfig
23
+
24
+
25
+ def get_model_config(config):
26
+ default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
27
+
28
+ if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
29
+ root_path = config._name_or_path
30
+ else:
31
+ root_path = config.resume_path
32
+
33
+ # download from huggingface
34
+ if root_path is not None and not osp.exists(root_path):
35
+ try:
36
+ valid_hf_repo = repo_exists(root_path)
37
+ except HFValidationError as e:
38
+ valid_hf_repo = False
39
+ if valid_hf_repo:
40
+ root_path = snapshot_download(root_path)
41
+
42
+ return_list = []
43
+ for key in default_keys:
44
+ cfg = getattr(config, key, None)
45
+ if isinstance(cfg, dict):
46
+ try:
47
+ return_list.append(os.path.join(root_path, key[:-4]))
48
+ except:
49
+ raise ValueError(f"Cannot find resume path in config for {key}!")
50
+ elif isinstance(cfg, PretrainedConfig):
51
+ return_list.append(os.path.join(root_path, key[:-4]))
52
+ elif isinstance(cfg, str):
53
+ return_list.append(cfg)
54
+
55
+ return return_list
56
+
57
+
58
+ def get_model_config_fp8(config):
59
+ default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
60
+
61
+ if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
62
+ root_path = config._name_or_path
63
+ else:
64
+ root_path = config.resume_path
65
+
66
+ # download from huggingface
67
+ if root_path is not None and not osp.exists(root_path):
68
+ try:
69
+ valid_hf_repo = repo_exists(root_path)
70
+ except HFValidationError as e:
71
+ valid_hf_repo = False
72
+ if valid_hf_repo:
73
+ root_path = snapshot_download(root_path)
74
+
75
+ return_list = []
76
+ for key in default_keys:
77
+ cfg = getattr(config, key, None)
78
+ if isinstance(cfg, dict):
79
+ try:
80
+ return_list.append(os.path.join(root_path, key[:-4]))
81
+ except:
82
+ raise ValueError(f"Cannot find resume path in config for {key}!")
83
+ elif isinstance(cfg, PretrainedConfig):
84
+ return_list.append(os.path.join(root_path, key[:-4]))
85
+ elif isinstance(cfg, str):
86
+ return_list.append(cfg)
87
+
88
+ # fp8_llm
89
+ key = "fp8_llm_cfg"
90
+ directory_path = os.path.join(root_path, key[:-4])
91
+ assert os.path.isdir(directory_path) and os.listdir(
92
+ directory_path
93
+ ), "You need to first convert the model weights to FP8 explicitly."
94
+ return_list.append(directory_path)
95
+
96
+ return return_list
97
+
98
+
99
+ def get_model_config_fp8(config):
100
+ default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
101
+
102
+ if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
103
+ root_path = config._name_or_path
104
+ else:
105
+ root_path = config.resume_path
106
+
107
+ # download from huggingface
108
+ if root_path is not None and not osp.exists(root_path):
109
+ try:
110
+ valid_hf_repo = repo_exists(root_path)
111
+ except HFValidationError as e:
112
+ valid_hf_repo = False
113
+ if valid_hf_repo:
114
+ root_path = snapshot_download(root_path)
115
+
116
+ return_list = []
117
+ for key in default_keys:
118
+ cfg = getattr(config, key, None)
119
+ if isinstance(cfg, dict):
120
+ try:
121
+ return_list.append(os.path.join(root_path, key[:-4]))
122
+ except:
123
+ raise ValueError(f"Cannot find resume path in config for {key}!")
124
+ elif isinstance(cfg, PretrainedConfig):
125
+ return_list.append(os.path.join(root_path, key[:-4]))
126
+ elif isinstance(cfg, str):
127
+ return_list.append(cfg)
128
+
129
+ # fp8_llm
130
+ key = "fp8_llm_cfg"
131
+ directory_path = os.path.join(root_path, key[:-4])
132
+ assert os.path.isdir(directory_path) and os.listdir(
133
+ directory_path
134
+ ), "You need to first convert the model weights to FP8 explicitly."
135
+ return_list.append(directory_path)
136
+
137
+ return return_list
138
+
139
+
140
+ def is_mm_model(model_path):
141
+ """
142
+ Check if the model at the given path is a visual language model.
143
+
144
+ Args:
145
+ model_path (str): The path to the model.
146
+
147
+ Returns:
148
+ bool: True if the model is an MM model, False otherwise.
149
+ """
150
+ config = AutoConfig.from_pretrained(model_path)
151
+ architectures = config.architectures
152
+ for architecture in architectures:
153
+ if "llava" in architecture.lower():
154
+ return True
155
+ return False
156
+
157
+
158
+ def auto_upgrade(config):
159
+ cfg = AutoConfig.from_pretrained(config)
160
+ if "llava" in config and "llava" not in cfg.model_type:
161
+ assert cfg.model_type == "llama"
162
+ print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
163
+ print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
164
+ confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
165
+ if confirm.lower() in ["y", "yes"]:
166
+ print("Upgrading checkpoint...")
167
+ assert len(cfg.architectures) == 1
168
+ setattr(cfg.__class__, "model_type", "llava")
169
+ cfg.architectures[0] = "LlavaLlamaForCausalLM"
170
+ cfg.save_pretrained(config)
171
+ print("Checkpoint upgraded.")
172
+ else:
173
+ print("Checkpoint upgrade aborted.")
174
+ exit(1)
vision_tower/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/vision_tower",
3
+ "architectures": [
4
+ "SiglipVisionModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "hidden_act": "gelu_pytorch_tanh",
8
+ "hidden_size": 1152,
9
+ "image_size": 448,
10
+ "intermediate_size": 4304,
11
+ "layer_norm_eps": 1e-06,
12
+ "model_type": "siglip_vision_model",
13
+ "num_attention_heads": 16,
14
+ "num_channels": 3,
15
+ "num_hidden_layers": 27,
16
+ "num_image_tokens": 256,
17
+ "patch_size": 14,
18
+ "projection_dim": 2048,
19
+ "projector_hidden_act": "gelu_fast",
20
+ "torch_dtype": "bfloat16",
21
+ "transformers_version": "4.46.0",
22
+ "vision_use_head": false
23
+ }
vision_tower/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38c39a77befc808483de3c3a5d20f02af1e3111e15a3e9909f64b2ea7b553fd9
3
+ size 826707904
vision_tower/preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 448,
22
+ "width": 448
23
+ }
24
+ }