Upload files with `vila-upload`.
Browse filesUpload conversation.py
Upload media_encoder.py
Upload media.py
Upload utils.py
Upload modeling_vila.py
Upload main.py
Upload constants.py
Upload config.json
Upload configuration_vila.py
Upload builder.py
Upload base_projector.py
Upload trainer_state.json
Upload mm_utils.py
Upload tokenizer_utils.py
Upload siglip_encoder.py
Upload llm/added_tokens.json
Upload llm/generation_config.json
Upload llm/merges.txt
Upload llm/special_tokens_map.json
Upload llm/config.json
Upload llm/vocab.json
Upload llm/tokenizer_config.json
Upload llm/model.safetensors
Upload mm_projector/config.json
Upload mm_projector/model.safetensors
Upload vision_tower/config.json
Upload vision_tower/preprocessor_config.json
Upload vision_tower/model.safetensors
- base_projector.py +228 -0
- builder.py +236 -0
- config.json +276 -0
- configuration_vila.py +85 -0
- constants.py +43 -0
- conversation.py +191 -0
- llm/added_tokens.json +7 -0
- llm/config.json +32 -0
- llm/generation_config.json +14 -0
- llm/merges.txt +0 -0
- llm/model.safetensors +3 -0
- llm/special_tokens_map.json +27 -0
- llm/tokenizer_config.json +61 -0
- llm/vocab.json +0 -0
- main.py +0 -0
- media.py +125 -0
- media_encoder.py +100 -0
- mm_projector/config.json +10 -0
- mm_projector/model.safetensors +3 -0
- mm_utils.py +572 -0
- modeling_vila.py +1024 -0
- siglip_encoder.py +287 -0
- tokenizer_utils.py +182 -0
- trainer_state.json +0 -0
- utils.py +174 -0
- vision_tower/config.json +23 -0
- vision_tower/model.safetensors +3 -0
- vision_tower/preprocessor_config.json +24 -0
base_projector.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
import re
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
|
22 |
+
|
23 |
+
|
24 |
+
class IdentityMap(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
def forward(self, x, *args, **kwargs):
|
29 |
+
return x
|
30 |
+
|
31 |
+
@property
|
32 |
+
def config(self):
|
33 |
+
return {"mm_projector_type": "identity"}
|
34 |
+
|
35 |
+
|
36 |
+
class SimpleResBlock(nn.Module):
|
37 |
+
def __init__(self, channels):
|
38 |
+
super().__init__()
|
39 |
+
self.pre_norm = nn.LayerNorm(channels)
|
40 |
+
|
41 |
+
self.proj = nn.Sequential(nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels))
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.pre_norm(x)
|
45 |
+
return x + self.proj(x)
|
46 |
+
|
47 |
+
|
48 |
+
class DownSampleBlock(nn.Module):
|
49 |
+
def forward(self, x):
|
50 |
+
vit_embeds = x
|
51 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
52 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
53 |
+
vit_embeds = self.flat_square(vit_embeds)
|
54 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
55 |
+
return vit_embeds
|
56 |
+
|
57 |
+
def flat_square(self, x):
|
58 |
+
n, w, h, c = x.size()
|
59 |
+
if w % 2 == 1:
|
60 |
+
x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
|
61 |
+
n, w, h, c = x.size()
|
62 |
+
if h % 2 == 1:
|
63 |
+
x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
|
64 |
+
n, w, h, c = x.size()
|
65 |
+
x = x.contiguous()
|
66 |
+
x = x.view(n, w, int(h / 2), int(c * 2))
|
67 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
68 |
+
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
|
69 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
class DownSample2x2BlockFix(nn.Module):
|
74 |
+
def forward(self, x):
|
75 |
+
vit_embeds = x
|
76 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
77 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
78 |
+
vit_embeds = flat_square_2x2(vit_embeds)
|
79 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
80 |
+
return vit_embeds
|
81 |
+
|
82 |
+
|
83 |
+
def flat_square_2x2(x):
|
84 |
+
n, w, h, c = x.size()
|
85 |
+
if w % 2 == 1:
|
86 |
+
x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
|
87 |
+
n, w, h, c = x.size()
|
88 |
+
x = x.contiguous()
|
89 |
+
if h % 2 == 1:
|
90 |
+
x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
|
91 |
+
n, w, h, c = x.size()
|
92 |
+
x = x.view(n, w, int(h / 2), int(c * 2))
|
93 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
94 |
+
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
|
95 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
96 |
+
return x
|
97 |
+
|
98 |
+
|
99 |
+
class DownSample3x3BlockFix(nn.Module):
|
100 |
+
def forward(self, x):
|
101 |
+
vit_embeds = x
|
102 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
103 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
104 |
+
vit_embeds = flat_square_3x3(vit_embeds)
|
105 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
106 |
+
return vit_embeds
|
107 |
+
|
108 |
+
|
109 |
+
def flat_square_3x3(x):
|
110 |
+
n, w, h, c = x.size()
|
111 |
+
if w % 3 != 0:
|
112 |
+
x = torch.concat([x, torch.zeros((n, 3 - (w % 3), h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
|
113 |
+
n, w, h, c = x.size()
|
114 |
+
x = x.contiguous()
|
115 |
+
if h % 3 != 0:
|
116 |
+
x = torch.concat([x, torch.zeros((n, w, 3 - (h % 3), c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
|
117 |
+
n, w, h, c = x.size()
|
118 |
+
x = x.view(n, w, int(h / 3), int(c * 3))
|
119 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
120 |
+
x = x.view(n, int(h / 3), int(w / 3), int(c * 9))
|
121 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
class MultimodalProjectorConfig(PretrainedConfig):
|
126 |
+
model_type = "v2l_projector"
|
127 |
+
|
128 |
+
def __init__(self, mm_projector_type: str = None, **kwargs):
|
129 |
+
super().__init__()
|
130 |
+
self.mm_projector_type = mm_projector_type
|
131 |
+
|
132 |
+
|
133 |
+
class MultimodalProjector(PreTrainedModel):
|
134 |
+
config_class = MultimodalProjectorConfig
|
135 |
+
|
136 |
+
def __init__(self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig):
|
137 |
+
super().__init__(mm_projector_cfg)
|
138 |
+
mm_projector_type = mm_projector_cfg.mm_projector_type
|
139 |
+
self.downsample_rate = 1
|
140 |
+
if mm_projector_type == "identity":
|
141 |
+
self.layers = IdentityMap()
|
142 |
+
elif mm_projector_type == "linear":
|
143 |
+
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
144 |
+
elif mm_projector_type == "mlp_downsample":
|
145 |
+
self.layers = nn.Sequential(
|
146 |
+
DownSampleBlock(),
|
147 |
+
nn.LayerNorm(config.mm_hidden_size * 4),
|
148 |
+
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
|
149 |
+
nn.GELU(),
|
150 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
151 |
+
)
|
152 |
+
self.downsample_rate = 2
|
153 |
+
elif mm_projector_type == "mlp_downsample_2x2_fix":
|
154 |
+
self.layers = nn.Sequential(
|
155 |
+
DownSample2x2BlockFix(),
|
156 |
+
nn.LayerNorm(config.mm_hidden_size * 4),
|
157 |
+
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
|
158 |
+
nn.GELU(),
|
159 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
160 |
+
)
|
161 |
+
self.downsample_rate = 2
|
162 |
+
elif mm_projector_type == "mlp_downsample_3x3_fix":
|
163 |
+
self.layers = nn.Sequential(
|
164 |
+
DownSample3x3BlockFix(),
|
165 |
+
nn.LayerNorm(config.mm_hidden_size * 9),
|
166 |
+
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
|
167 |
+
nn.GELU(),
|
168 |
+
nn.LayerNorm(config.mm_hidden_size * 3),
|
169 |
+
nn.Linear(config.mm_hidden_size * 3, config.hidden_size),
|
170 |
+
nn.GELU(),
|
171 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
172 |
+
)
|
173 |
+
self.downsample_rate = 3
|
174 |
+
elif mm_projector_type == "mlp_downsample_3x3_s2":
|
175 |
+
self.layers = nn.Sequential(
|
176 |
+
DownSample3x3BlockFix(),
|
177 |
+
nn.LayerNorm(config.mm_hidden_size * 9),
|
178 |
+
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
|
179 |
+
nn.GELU(),
|
180 |
+
nn.LayerNorm(config.mm_hidden_size * 3),
|
181 |
+
nn.Linear(config.mm_hidden_size * 3, config.mm_hidden_size),
|
182 |
+
nn.GELU(),
|
183 |
+
nn.LayerNorm(config.mm_hidden_size),
|
184 |
+
nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
|
185 |
+
nn.GELU(),
|
186 |
+
nn.LayerNorm(config.mm_hidden_size // 3),
|
187 |
+
nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
|
188 |
+
nn.GELU(),
|
189 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
190 |
+
)
|
191 |
+
elif mm_projector_type == "mlp_downsample_3x3_s2_new":
|
192 |
+
self.layers = nn.Sequential(
|
193 |
+
DownSample3x3BlockFix(),
|
194 |
+
nn.LayerNorm(config.mm_hidden_size * 9),
|
195 |
+
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 4),
|
196 |
+
nn.GELU(),
|
197 |
+
nn.LayerNorm(config.mm_hidden_size * 4),
|
198 |
+
nn.Linear(config.mm_hidden_size * 4, config.mm_hidden_size * 2),
|
199 |
+
nn.GELU(),
|
200 |
+
nn.LayerNorm(config.mm_hidden_size * 2),
|
201 |
+
nn.Linear(config.mm_hidden_size * 2, config.mm_hidden_size),
|
202 |
+
nn.GELU(),
|
203 |
+
nn.LayerNorm(config.mm_hidden_size),
|
204 |
+
nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
|
205 |
+
nn.GELU(),
|
206 |
+
nn.LayerNorm(config.mm_hidden_size // 3),
|
207 |
+
nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
|
208 |
+
nn.GELU(),
|
209 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
|
213 |
+
if mlp_gelu_match:
|
214 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
215 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
216 |
+
for _ in range(1, mlp_depth):
|
217 |
+
modules.append(nn.GELU())
|
218 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
219 |
+
self.layers = nn.Sequential(*modules)
|
220 |
+
else:
|
221 |
+
raise ValueError(f"Unknown projector type: {mm_projector_type}")
|
222 |
+
|
223 |
+
def forward(self, x, *args, **kwargs):
|
224 |
+
return self.layers(x)
|
225 |
+
|
226 |
+
|
227 |
+
# AutoConfig.register("v2l_projector", MultimodalProjectorConfig)
|
228 |
+
# AutoModel.register(MultimodalProjectorConfig, MultimodalProjector)
|
builder.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
import os.path as osp
|
20 |
+
import warnings
|
21 |
+
from dataclasses import asdict
|
22 |
+
from typing import Any, Dict, List, Optional, Sequence, Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import file_exists, repo_exists
|
26 |
+
from huggingface_hub.utils import HFValidationError
|
27 |
+
import transformers
|
28 |
+
from transformers import (
|
29 |
+
AutoConfig,
|
30 |
+
AutoModelForCausalLM,
|
31 |
+
AutoTokenizer,
|
32 |
+
PretrainedConfig,
|
33 |
+
PreTrainedModel,
|
34 |
+
PreTrainedTokenizer,
|
35 |
+
)
|
36 |
+
# from .conversation import *
|
37 |
+
from .conversation import default_conversation, SeparatorStyle
|
38 |
+
|
39 |
+
SENTINEL_TOKEN = "<vila/sentinel>"
|
40 |
+
MEDIA_TOKENS = {
|
41 |
+
"image": "<image>",
|
42 |
+
"video": "<vila/video>",
|
43 |
+
}
|
44 |
+
|
45 |
+
# from llava.model.utils import packing
|
46 |
+
# from llava.utils.logging import logger
|
47 |
+
# from llava.utils.tokenizer import infer_stop_tokens
|
48 |
+
|
49 |
+
DUMMY_CONVERSATION = [
|
50 |
+
{"from": "human", "value": "question"},
|
51 |
+
{"from": "gpt", "value": "answer"},
|
52 |
+
] * 10
|
53 |
+
|
54 |
+
def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
|
55 |
+
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
|
56 |
+
|
57 |
+
def has_tokenizer(repo_id_or_path: str) -> bool:
|
58 |
+
# Check if the tokenizer is in a local directory
|
59 |
+
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
|
60 |
+
return True
|
61 |
+
|
62 |
+
# Check if the tokenizer is in a Hugging Face Hub repo
|
63 |
+
try:
|
64 |
+
return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json")
|
65 |
+
except HFValidationError:
|
66 |
+
return False
|
67 |
+
|
68 |
+
def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
|
69 |
+
if not hasattr(tokenizer, "sentinel_token"):
|
70 |
+
tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
|
71 |
+
tokenizer.sentinel_token = SENTINEL_TOKEN
|
72 |
+
tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)
|
73 |
+
|
74 |
+
def tokenize_conversation_legacy(
|
75 |
+
messages: Sequence[Dict[str, str]],
|
76 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
77 |
+
add_generation_prompt: bool = False,
|
78 |
+
overrides: Optional[Dict[str, str]] = None,
|
79 |
+
no_system_prompt: bool = False,
|
80 |
+
) -> torch.Tensor:
|
81 |
+
conv = default_conversation.copy()
|
82 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
83 |
+
|
84 |
+
if no_system_prompt:
|
85 |
+
conv.system = ""
|
86 |
+
|
87 |
+
# Skip the first message if it is not from human
|
88 |
+
if messages[0]["from"] != "human":
|
89 |
+
messages = messages[1:]
|
90 |
+
|
91 |
+
# Add a generation prompt if needed
|
92 |
+
if add_generation_prompt:
|
93 |
+
messages.append({"from": "gpt", "value": None})
|
94 |
+
|
95 |
+
conv.messages = []
|
96 |
+
for turn, message in enumerate(messages):
|
97 |
+
role = roles[message["from"]]
|
98 |
+
assert role == conv.roles[turn % 2]
|
99 |
+
if overrides is not None and message["from"] in overrides:
|
100 |
+
conv.append_message(role, overrides[message["from"]])
|
101 |
+
else:
|
102 |
+
conv.append_message(role, message["value"])
|
103 |
+
|
104 |
+
return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")
|
105 |
+
|
106 |
+
def tokenize_conversation(
|
107 |
+
messages: Sequence[Dict[str, str]],
|
108 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
109 |
+
add_generation_prompt: bool = False,
|
110 |
+
overrides: Optional[Dict[str, str]] = None,
|
111 |
+
no_system_prompt: bool = False,
|
112 |
+
) -> torch.Tensor:
|
113 |
+
# Normalize the conversation before tokenization
|
114 |
+
for message in messages:
|
115 |
+
message["value"] = message["value"].strip()
|
116 |
+
|
117 |
+
if default_conversation.sep_style != SeparatorStyle.AUTO:
|
118 |
+
return tokenize_conversation_legacy(
|
119 |
+
messages,
|
120 |
+
tokenizer,
|
121 |
+
add_generation_prompt=add_generation_prompt,
|
122 |
+
overrides=overrides,
|
123 |
+
no_system_prompt=no_system_prompt,
|
124 |
+
)
|
125 |
+
|
126 |
+
conversation = []
|
127 |
+
for m in messages:
|
128 |
+
message = {}
|
129 |
+
if m["from"] == "human":
|
130 |
+
message["role"] = "user"
|
131 |
+
elif m["from"] == "gpt":
|
132 |
+
message["role"] = "assistant"
|
133 |
+
else:
|
134 |
+
raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")
|
135 |
+
|
136 |
+
message["content"] = m["value"]
|
137 |
+
if overrides is not None and m["from"] in overrides:
|
138 |
+
message["content"] = overrides[m["from"]]
|
139 |
+
conversation.append(message)
|
140 |
+
|
141 |
+
if no_system_prompt:
|
142 |
+
conversation = [{"role": "system", "content": ""}] + conversation
|
143 |
+
|
144 |
+
text = tokenizer.apply_chat_template(
|
145 |
+
conversation,
|
146 |
+
add_generation_prompt=add_generation_prompt,
|
147 |
+
tokenize=False,
|
148 |
+
)
|
149 |
+
return tokenizer_image_token(text, tokenizer, return_tensors="pt")
|
150 |
+
|
151 |
+
def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
|
152 |
+
_maybe_add_sentinel_token(tokenizer)
|
153 |
+
template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})
|
154 |
+
|
155 |
+
stop_tokens = {tokenizer.eos_token}
|
156 |
+
for k in range(template.size(0) - 1):
|
157 |
+
if template[k] == tokenizer.sentinel_token_id:
|
158 |
+
stop_token = tokenizer.decode(template[k + 1])
|
159 |
+
stop_tokens.add(stop_token)
|
160 |
+
return list(stop_tokens)
|
161 |
+
|
162 |
+
def context_length_extension(config):
|
163 |
+
orig_ctx_len = getattr(config, "max_position_embeddings", None)
|
164 |
+
model_max_length = getattr(config, "model_max_length", None)
|
165 |
+
if orig_ctx_len and model_max_length > orig_ctx_len:
|
166 |
+
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
|
167 |
+
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
|
168 |
+
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
|
169 |
+
return config
|
170 |
+
|
171 |
+
|
172 |
+
def build_llm_and_tokenizer(
|
173 |
+
model_name_or_path: str,
|
174 |
+
config: PretrainedConfig,
|
175 |
+
attn_implementation=None,
|
176 |
+
model_max_length=None,
|
177 |
+
*args,
|
178 |
+
**kwargs,
|
179 |
+
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
|
180 |
+
# print(model_name_or_path)
|
181 |
+
llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
|
182 |
+
llm_cfg._attn_implementation = attn_implementation
|
183 |
+
llm_cfg.model_max_length = model_max_length
|
184 |
+
if model_max_length is not None:
|
185 |
+
context_length_extension(llm_cfg)
|
186 |
+
|
187 |
+
# Quantization related
|
188 |
+
quantization_restore_from_checkpoint = False
|
189 |
+
|
190 |
+
if quantization_restore_from_checkpoint:
|
191 |
+
fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None)
|
192 |
+
|
193 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
194 |
+
fp8_model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
198 |
+
model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
|
199 |
+
)
|
200 |
+
# NOTE(ligeng): not sure whether it affects the training
|
201 |
+
# packing.patch(llm)
|
202 |
+
|
203 |
+
# Locate the tokenizer.
|
204 |
+
llm_path = model_name_or_path
|
205 |
+
if not has_tokenizer(llm_path):
|
206 |
+
llm_path = osp.join(llm_path, "llm")
|
207 |
+
if not has_tokenizer(llm_path):
|
208 |
+
raise ValueError(f"Cannot find tokenizer in {llm_path}.")
|
209 |
+
|
210 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False)
|
211 |
+
if model_max_length is not None:
|
212 |
+
tokenizer.model_max_length = model_max_length
|
213 |
+
|
214 |
+
# Load chat template if specified.
|
215 |
+
if getattr(config, "chat_template", None) is not None:
|
216 |
+
print(f"Using chat template: {config.chat_template}")
|
217 |
+
fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
|
218 |
+
with open(fpath) as fd:
|
219 |
+
chat_template = fd.read()
|
220 |
+
tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
|
221 |
+
|
222 |
+
# NOTE(ligeng): disable temporarially, let see will any bugs introduce
|
223 |
+
# Set stop tokens for the tokenizer
|
224 |
+
tokenizer.stop_tokens = infer_stop_tokens(tokenizer)
|
225 |
+
tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens)
|
226 |
+
|
227 |
+
# Add media tokens to the tokenizer
|
228 |
+
tokenizer.media_tokens = MEDIA_TOKENS
|
229 |
+
tokenizer.media_token_ids = {}
|
230 |
+
for name, token in MEDIA_TOKENS.items():
|
231 |
+
tokenizer.add_tokens([token], special_tokens=True)
|
232 |
+
tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token)
|
233 |
+
|
234 |
+
# TODO(ligeng): is this necessary for llava?
|
235 |
+
config.hidden_size = llm.config.hidden_size
|
236 |
+
return llm, tokenizer
|
config.json
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model",
|
4 |
+
"architectures": [
|
5 |
+
"VILAForCasualLM"
|
6 |
+
],
|
7 |
+
"chat_template": null,
|
8 |
+
"drop_path_rate": 0.0,
|
9 |
+
"dynamic_s2": false,
|
10 |
+
"fps": 0.0,
|
11 |
+
"hidden_size": 1536,
|
12 |
+
"image_aspect_ratio": "dynamic",
|
13 |
+
"interpolate_mode": "linear",
|
14 |
+
"llm_cfg": {
|
15 |
+
"_attn_implementation_autoset": false,
|
16 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/llm",
|
17 |
+
"add_cross_attention": false,
|
18 |
+
"architectures": [
|
19 |
+
"Qwen2ForCausalLM"
|
20 |
+
],
|
21 |
+
"attention_dropout": 0.0,
|
22 |
+
"bad_words_ids": null,
|
23 |
+
"begin_suppress_tokens": null,
|
24 |
+
"bos_token_id": 151643,
|
25 |
+
"chunk_size_feed_forward": 0,
|
26 |
+
"cross_attention_hidden_size": null,
|
27 |
+
"decoder_start_token_id": null,
|
28 |
+
"diversity_penalty": 0.0,
|
29 |
+
"do_sample": false,
|
30 |
+
"early_stopping": false,
|
31 |
+
"encoder_no_repeat_ngram_size": 0,
|
32 |
+
"eos_token_id": 151645,
|
33 |
+
"exponential_decay_length_penalty": null,
|
34 |
+
"finetuning_task": null,
|
35 |
+
"forced_bos_token_id": null,
|
36 |
+
"forced_eos_token_id": null,
|
37 |
+
"hidden_act": "silu",
|
38 |
+
"hidden_size": 1536,
|
39 |
+
"id2label": {
|
40 |
+
"0": "LABEL_0",
|
41 |
+
"1": "LABEL_1"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 8960,
|
45 |
+
"is_decoder": false,
|
46 |
+
"is_encoder_decoder": false,
|
47 |
+
"label2id": {
|
48 |
+
"LABEL_0": 0,
|
49 |
+
"LABEL_1": 1
|
50 |
+
},
|
51 |
+
"length_penalty": 1.0,
|
52 |
+
"max_length": 20,
|
53 |
+
"max_position_embeddings": 32768,
|
54 |
+
"max_window_layers": 28,
|
55 |
+
"min_length": 0,
|
56 |
+
"model_max_length": 4096,
|
57 |
+
"model_type": "qwen2",
|
58 |
+
"no_repeat_ngram_size": 0,
|
59 |
+
"num_attention_heads": 12,
|
60 |
+
"num_beam_groups": 1,
|
61 |
+
"num_beams": 1,
|
62 |
+
"num_hidden_layers": 28,
|
63 |
+
"num_key_value_heads": 2,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"output_attentions": false,
|
66 |
+
"output_hidden_states": false,
|
67 |
+
"output_scores": false,
|
68 |
+
"pad_token_id": null,
|
69 |
+
"prefix": null,
|
70 |
+
"problem_type": null,
|
71 |
+
"pruned_heads": {},
|
72 |
+
"remove_invalid_values": false,
|
73 |
+
"repetition_penalty": 1.0,
|
74 |
+
"return_dict": true,
|
75 |
+
"return_dict_in_generate": false,
|
76 |
+
"rms_norm_eps": 1e-06,
|
77 |
+
"rope_scaling": null,
|
78 |
+
"rope_theta": 1000000.0,
|
79 |
+
"sep_token_id": null,
|
80 |
+
"sliding_window": null,
|
81 |
+
"suppress_tokens": null,
|
82 |
+
"task_specific_params": null,
|
83 |
+
"temperature": 1.0,
|
84 |
+
"tf_legacy_loss": false,
|
85 |
+
"tie_encoder_decoder": false,
|
86 |
+
"tie_word_embeddings": true,
|
87 |
+
"tokenizer_class": null,
|
88 |
+
"tokenizer_model_max_length": 4096,
|
89 |
+
"tokenizer_padding_side": "right",
|
90 |
+
"top_k": 50,
|
91 |
+
"top_p": 1.0,
|
92 |
+
"torch_dtype": "bfloat16",
|
93 |
+
"torchscript": false,
|
94 |
+
"typical_p": 1.0,
|
95 |
+
"use_bfloat16": false,
|
96 |
+
"use_cache": true,
|
97 |
+
"use_sliding_window": false,
|
98 |
+
"vocab_size": 151648
|
99 |
+
},
|
100 |
+
"mm_hidden_size": 1152,
|
101 |
+
"mm_projector_cfg": {
|
102 |
+
"_attn_implementation_autoset": false,
|
103 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/mm_projector",
|
104 |
+
"add_cross_attention": false,
|
105 |
+
"architectures": [
|
106 |
+
"MultimodalProjector"
|
107 |
+
],
|
108 |
+
"bad_words_ids": null,
|
109 |
+
"begin_suppress_tokens": null,
|
110 |
+
"bos_token_id": null,
|
111 |
+
"chunk_size_feed_forward": 0,
|
112 |
+
"cross_attention_hidden_size": null,
|
113 |
+
"decoder_start_token_id": null,
|
114 |
+
"diversity_penalty": 0.0,
|
115 |
+
"do_sample": false,
|
116 |
+
"early_stopping": false,
|
117 |
+
"encoder_no_repeat_ngram_size": 0,
|
118 |
+
"eos_token_id": null,
|
119 |
+
"exponential_decay_length_penalty": null,
|
120 |
+
"finetuning_task": null,
|
121 |
+
"forced_bos_token_id": null,
|
122 |
+
"forced_eos_token_id": null,
|
123 |
+
"id2label": {
|
124 |
+
"0": "LABEL_0",
|
125 |
+
"1": "LABEL_1"
|
126 |
+
},
|
127 |
+
"is_decoder": false,
|
128 |
+
"is_encoder_decoder": false,
|
129 |
+
"label2id": {
|
130 |
+
"LABEL_0": 0,
|
131 |
+
"LABEL_1": 1
|
132 |
+
},
|
133 |
+
"length_penalty": 1.0,
|
134 |
+
"max_length": 20,
|
135 |
+
"min_length": 0,
|
136 |
+
"mm_projector_type": "mlp_downsample_3x3_fix",
|
137 |
+
"model_type": "v2l_projector",
|
138 |
+
"no_repeat_ngram_size": 0,
|
139 |
+
"num_beam_groups": 1,
|
140 |
+
"num_beams": 1,
|
141 |
+
"num_return_sequences": 1,
|
142 |
+
"output_attentions": false,
|
143 |
+
"output_hidden_states": false,
|
144 |
+
"output_scores": false,
|
145 |
+
"pad_token_id": null,
|
146 |
+
"prefix": null,
|
147 |
+
"problem_type": null,
|
148 |
+
"pruned_heads": {},
|
149 |
+
"remove_invalid_values": false,
|
150 |
+
"repetition_penalty": 1.0,
|
151 |
+
"return_dict": true,
|
152 |
+
"return_dict_in_generate": false,
|
153 |
+
"sep_token_id": null,
|
154 |
+
"suppress_tokens": null,
|
155 |
+
"task_specific_params": null,
|
156 |
+
"temperature": 1.0,
|
157 |
+
"tf_legacy_loss": false,
|
158 |
+
"tie_encoder_decoder": false,
|
159 |
+
"tie_word_embeddings": true,
|
160 |
+
"tokenizer_class": null,
|
161 |
+
"top_k": 50,
|
162 |
+
"top_p": 1.0,
|
163 |
+
"torch_dtype": "bfloat16",
|
164 |
+
"torchscript": false,
|
165 |
+
"typical_p": 1.0,
|
166 |
+
"use_bfloat16": false
|
167 |
+
},
|
168 |
+
"mm_projector_lr": null,
|
169 |
+
"mm_use_im_patch_token": true,
|
170 |
+
"mm_use_im_start_end": false,
|
171 |
+
"mm_vision_select_feature": "cls_patch",
|
172 |
+
"mm_vision_select_layer": -2,
|
173 |
+
"model_dtype": "torch.bfloat16",
|
174 |
+
"model_type": "vila",
|
175 |
+
"num_time_tokens": 0,
|
176 |
+
"num_video_frames": 8,
|
177 |
+
"resume_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model",
|
178 |
+
"s2": false,
|
179 |
+
"s2_max_split_size": 336,
|
180 |
+
"s2_resize_output_to_scale_idx": 0,
|
181 |
+
"s2_scales": "336,672,1008",
|
182 |
+
"soft_ce_std": 1.0,
|
183 |
+
"time_token_format": "<t{t}>",
|
184 |
+
"time_token_ids": [],
|
185 |
+
"transformers_version": "4.46.0",
|
186 |
+
"tune_language_model": true,
|
187 |
+
"tune_mm_projector": true,
|
188 |
+
"tune_vision_tower": true,
|
189 |
+
"vision_resolution": -1,
|
190 |
+
"vision_tower_cfg": {
|
191 |
+
"_attn_implementation_autoset": false,
|
192 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/vision_tower",
|
193 |
+
"add_cross_attention": false,
|
194 |
+
"architectures": [
|
195 |
+
"SiglipVisionModel"
|
196 |
+
],
|
197 |
+
"attention_dropout": 0.0,
|
198 |
+
"bad_words_ids": null,
|
199 |
+
"begin_suppress_tokens": null,
|
200 |
+
"bos_token_id": null,
|
201 |
+
"chunk_size_feed_forward": 0,
|
202 |
+
"cross_attention_hidden_size": null,
|
203 |
+
"decoder_start_token_id": null,
|
204 |
+
"diversity_penalty": 0.0,
|
205 |
+
"do_sample": false,
|
206 |
+
"early_stopping": false,
|
207 |
+
"encoder_no_repeat_ngram_size": 0,
|
208 |
+
"eos_token_id": null,
|
209 |
+
"exponential_decay_length_penalty": null,
|
210 |
+
"finetuning_task": null,
|
211 |
+
"forced_bos_token_id": null,
|
212 |
+
"forced_eos_token_id": null,
|
213 |
+
"hidden_act": "gelu_pytorch_tanh",
|
214 |
+
"hidden_size": 1152,
|
215 |
+
"id2label": {
|
216 |
+
"0": "LABEL_0",
|
217 |
+
"1": "LABEL_1"
|
218 |
+
},
|
219 |
+
"image_size": 448,
|
220 |
+
"intermediate_size": 4304,
|
221 |
+
"is_decoder": false,
|
222 |
+
"is_encoder_decoder": false,
|
223 |
+
"label2id": {
|
224 |
+
"LABEL_0": 0,
|
225 |
+
"LABEL_1": 1
|
226 |
+
},
|
227 |
+
"layer_norm_eps": 1e-06,
|
228 |
+
"length_penalty": 1.0,
|
229 |
+
"max_length": 20,
|
230 |
+
"min_length": 0,
|
231 |
+
"model_type": "siglip_vision_model",
|
232 |
+
"no_repeat_ngram_size": 0,
|
233 |
+
"num_attention_heads": 16,
|
234 |
+
"num_beam_groups": 1,
|
235 |
+
"num_beams": 1,
|
236 |
+
"num_channels": 3,
|
237 |
+
"num_hidden_layers": 27,
|
238 |
+
"num_image_tokens": 256,
|
239 |
+
"num_return_sequences": 1,
|
240 |
+
"output_attentions": false,
|
241 |
+
"output_hidden_states": false,
|
242 |
+
"output_scores": false,
|
243 |
+
"pad_token_id": null,
|
244 |
+
"patch_size": 14,
|
245 |
+
"prefix": null,
|
246 |
+
"problem_type": null,
|
247 |
+
"projection_dim": 2048,
|
248 |
+
"projector_hidden_act": "gelu_fast",
|
249 |
+
"pruned_heads": {},
|
250 |
+
"remove_invalid_values": false,
|
251 |
+
"repetition_penalty": 1.0,
|
252 |
+
"return_dict": true,
|
253 |
+
"return_dict_in_generate": false,
|
254 |
+
"sep_token_id": null,
|
255 |
+
"suppress_tokens": null,
|
256 |
+
"task_specific_params": null,
|
257 |
+
"temperature": 1.0,
|
258 |
+
"tf_legacy_loss": false,
|
259 |
+
"tie_encoder_decoder": false,
|
260 |
+
"tie_word_embeddings": true,
|
261 |
+
"tokenizer_class": null,
|
262 |
+
"top_k": 50,
|
263 |
+
"top_p": 1.0,
|
264 |
+
"torch_dtype": "bfloat16",
|
265 |
+
"torchscript": false,
|
266 |
+
"typical_p": 1.0,
|
267 |
+
"use_bfloat16": false,
|
268 |
+
"vision_use_head": false
|
269 |
+
},
|
270 |
+
"version": "2.0",
|
271 |
+
"auto_map": {
|
272 |
+
"AutoConfig": "modeling_vila.VILAConfig",
|
273 |
+
"AutoModel": "modeling_vila.VILAForCasualLM",
|
274 |
+
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM"
|
275 |
+
}
|
276 |
+
}
|
configuration_vila.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
import os, os.path as osp
|
7 |
+
|
8 |
+
from threading import Thread
|
9 |
+
from copy import deepcopy
|
10 |
+
from PIL import Image
|
11 |
+
from transformers import Qwen2Config, PretrainedConfig, PreTrainedModel
|
12 |
+
from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer
|
13 |
+
|
14 |
+
class VILAConfig(PretrainedConfig):
|
15 |
+
model_type = "vila"
|
16 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
llm_cfg=None,
|
21 |
+
vision_tower_cfg=None,
|
22 |
+
mm_projector_cfg=None,
|
23 |
+
architectures=None,
|
24 |
+
resume_path=None,
|
25 |
+
hidden_size=None,
|
26 |
+
mm_hidden_size=None,
|
27 |
+
image_aspect_ratio=None,
|
28 |
+
num_video_frames=None,
|
29 |
+
fps=None,
|
30 |
+
mm_vision_select_layer=None,
|
31 |
+
mm_vision_select_feature=None,
|
32 |
+
mm_use_im_start_end=False,
|
33 |
+
mm_use_im_patch_token=False,
|
34 |
+
mm_projector_lr=None,
|
35 |
+
vision_tower_lr=None,
|
36 |
+
vision_resolution=None,
|
37 |
+
interpolate_mode=None,
|
38 |
+
s2=None,
|
39 |
+
dynamic_s2=None,
|
40 |
+
s2_scales=None,
|
41 |
+
s2_max_split_size=None,
|
42 |
+
s2_resize_output_to_scale_idx=0,
|
43 |
+
min_tiles: Optional[int] = 1,
|
44 |
+
max_tiles: Optional[int] = 12,
|
45 |
+
num_time_tokens=None,
|
46 |
+
time_token_format=None,
|
47 |
+
image_encoder: str = '{"_target_": "llava.model.encoders.BasicImageEncoder"}',
|
48 |
+
video_encoder: str = '{"_target_": "llava.model.encoders.BasicVideoEncoder"}',
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
self.architectures = architectures
|
53 |
+
self.llm_cfg = llm_cfg
|
54 |
+
self.vision_tower_cfg = vision_tower_cfg
|
55 |
+
self.mm_projector_cfg = mm_projector_cfg
|
56 |
+
self.resume_path = resume_path
|
57 |
+
|
58 |
+
self.hidden_size = hidden_size
|
59 |
+
self.mm_hidden_size = mm_hidden_size
|
60 |
+
self.image_aspect_ratio = image_aspect_ratio
|
61 |
+
self.num_video_frames = num_video_frames
|
62 |
+
self.fps = fps
|
63 |
+
self.mm_vision_select_layer = mm_vision_select_layer
|
64 |
+
self.mm_vision_select_feature = mm_vision_select_feature
|
65 |
+
self.mm_use_im_start_end = mm_use_im_start_end
|
66 |
+
self.mm_use_im_patch_token = mm_use_im_patch_token
|
67 |
+
self.mm_projector_lr = mm_projector_lr
|
68 |
+
self.vision_tower_lr = vision_tower_lr
|
69 |
+
self.vision_resolution = vision_resolution
|
70 |
+
self.interpolate_mode = interpolate_mode
|
71 |
+
self.s2 = s2
|
72 |
+
self.dynamic_s2 = dynamic_s2
|
73 |
+
self.s2_scales = s2_scales
|
74 |
+
self.s2_max_split_size = s2_max_split_size
|
75 |
+
self.s2_resize_output_to_scale_idx = s2_resize_output_to_scale_idx
|
76 |
+
self.min_tiles = min_tiles
|
77 |
+
self.max_tiles = max_tiles
|
78 |
+
self.num_time_tokens = num_time_tokens
|
79 |
+
self.time_token_format = time_token_format
|
80 |
+
|
81 |
+
self.image_encoder = image_encoder
|
82 |
+
self.video_encoder = video_encoder
|
83 |
+
|
84 |
+
super().__init__(**kwargs)
|
85 |
+
|
constants.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
18 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
19 |
+
|
20 |
+
LOGDIR = "."
|
21 |
+
|
22 |
+
# Model Constants
|
23 |
+
IGNORE_INDEX = -100
|
24 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
25 |
+
|
26 |
+
SENTINEL_TOKEN = "<vila/sentinel>"
|
27 |
+
MEDIA_TOKENS = {
|
28 |
+
"image": "<image>",
|
29 |
+
"video": "<vila/video>",
|
30 |
+
}
|
31 |
+
# <image> <vila/video> <vila/sentinel>
|
32 |
+
# TODO(ligeng): need to discuss with Zhijian for the following tokens for different models.
|
33 |
+
"""
|
34 |
+
151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
35 |
+
151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
36 |
+
151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
37 |
+
151646: AddedToken("[BOS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
38 |
+
151647: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
39 |
+
151648: AddedToken("<vila/sentinel>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
40 |
+
151649: AddedToken("<image>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
41 |
+
151650: AddedToken("<vila/video>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
42 |
+
"""
|
43 |
+
NUM_EXTRA_TOKENS = 8
|
conversation.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
17 |
+
|
18 |
+
import dataclasses
|
19 |
+
from enum import Enum, auto
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
# from llava.utils.logging import logger
|
23 |
+
|
24 |
+
|
25 |
+
class SeparatorStyle(Enum):
|
26 |
+
"""Different separator style."""
|
27 |
+
|
28 |
+
AUTO = auto()
|
29 |
+
TWO = auto()
|
30 |
+
MPT = auto()
|
31 |
+
PLAIN = auto()
|
32 |
+
LLAMA_3 = auto()
|
33 |
+
|
34 |
+
|
35 |
+
@dataclasses.dataclass
|
36 |
+
class Conversation:
|
37 |
+
"""A class that keeps all conversation history."""
|
38 |
+
|
39 |
+
system: str
|
40 |
+
roles: List[str]
|
41 |
+
messages: List[List[str]]
|
42 |
+
sep_style: SeparatorStyle = SeparatorStyle.AUTO
|
43 |
+
sep: str = "###"
|
44 |
+
sep2: str = None
|
45 |
+
version: str = "Unknown"
|
46 |
+
|
47 |
+
def get_prompt(self):
|
48 |
+
messages = self.messages
|
49 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
50 |
+
messages = self.messages.copy()
|
51 |
+
init_role, init_msg = messages[0].copy()
|
52 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
53 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
54 |
+
|
55 |
+
if self.sep_style == SeparatorStyle.TWO:
|
56 |
+
seps = [self.sep, self.sep2]
|
57 |
+
ret = self.system + seps[0]
|
58 |
+
for i, (role, message) in enumerate(messages):
|
59 |
+
if message:
|
60 |
+
if type(message) is tuple:
|
61 |
+
message, _, _ = message
|
62 |
+
ret += role + ": " + message + seps[i % 2]
|
63 |
+
else:
|
64 |
+
ret += role + ":"
|
65 |
+
elif self.sep_style == SeparatorStyle.LLAMA_3:
|
66 |
+
ret = self.system + self.sep
|
67 |
+
for rid, (role, message) in enumerate(messages):
|
68 |
+
if message:
|
69 |
+
if type(message) is tuple:
|
70 |
+
message = message[0]
|
71 |
+
sep = self.sep if rid < len(messages) - 1 else self.sep2
|
72 |
+
ret += role + message + sep
|
73 |
+
else:
|
74 |
+
ret += role
|
75 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
76 |
+
ret = self.system + self.sep
|
77 |
+
for role, message in messages:
|
78 |
+
if message:
|
79 |
+
if type(message) is tuple:
|
80 |
+
message, _, _ = message
|
81 |
+
ret += role + message + self.sep
|
82 |
+
else:
|
83 |
+
ret += role
|
84 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
85 |
+
seps = [self.sep, self.sep2]
|
86 |
+
ret = self.system
|
87 |
+
for i, (role, message) in enumerate(messages):
|
88 |
+
if message:
|
89 |
+
if type(message) is tuple:
|
90 |
+
message, _, _ = message
|
91 |
+
ret += message + seps[i % 2]
|
92 |
+
else:
|
93 |
+
ret += ""
|
94 |
+
else:
|
95 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
96 |
+
|
97 |
+
return ret
|
98 |
+
|
99 |
+
def append_message(self, role, message):
|
100 |
+
self.messages.append([role, message])
|
101 |
+
|
102 |
+
def copy(self):
|
103 |
+
return Conversation(
|
104 |
+
system=self.system,
|
105 |
+
roles=self.roles,
|
106 |
+
messages=[[x, y] for x, y in self.messages],
|
107 |
+
sep_style=self.sep_style,
|
108 |
+
sep=self.sep,
|
109 |
+
sep2=self.sep2,
|
110 |
+
version=self.version,
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
conv_auto = Conversation(
|
115 |
+
system="",
|
116 |
+
roles=("", ""),
|
117 |
+
messages=(),
|
118 |
+
sep_style=SeparatorStyle.AUTO,
|
119 |
+
sep="\n",
|
120 |
+
)
|
121 |
+
|
122 |
+
conv_vicuna_v1 = Conversation(
|
123 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
124 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
125 |
+
roles=("USER", "ASSISTANT"),
|
126 |
+
version="v1",
|
127 |
+
messages=(),
|
128 |
+
sep_style=SeparatorStyle.TWO,
|
129 |
+
sep=" ",
|
130 |
+
sep2="</s>",
|
131 |
+
)
|
132 |
+
|
133 |
+
conv_llava_plain = Conversation(
|
134 |
+
system="",
|
135 |
+
roles=("", ""),
|
136 |
+
messages=(),
|
137 |
+
sep_style=SeparatorStyle.PLAIN,
|
138 |
+
sep="\n",
|
139 |
+
)
|
140 |
+
|
141 |
+
hermes_2 = Conversation(
|
142 |
+
system="<|im_start|>system\nAnswer the questions.",
|
143 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
144 |
+
sep_style=SeparatorStyle.MPT,
|
145 |
+
sep="<|im_end|>",
|
146 |
+
messages=(),
|
147 |
+
version="hermes-2",
|
148 |
+
)
|
149 |
+
|
150 |
+
# Template added by Yukang. Note (kentang-mit@): sep is <|eot_id|> for official template.
|
151 |
+
llama_3_chat = Conversation(
|
152 |
+
system="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. "
|
153 |
+
"You are able to understand the visual content that the user provides, "
|
154 |
+
"and assist the user with a variety of tasks using natural language.",
|
155 |
+
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
|
156 |
+
version="llama_v3",
|
157 |
+
messages=(),
|
158 |
+
sep_style=SeparatorStyle.LLAMA_3,
|
159 |
+
sep="<|eot_id|>",
|
160 |
+
sep2="<|end_of_text|>",
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
default_conversation = conv_auto
|
165 |
+
conv_templates = {
|
166 |
+
"auto": conv_auto,
|
167 |
+
"hermes-2": hermes_2,
|
168 |
+
"llama_3": llama_3_chat,
|
169 |
+
"v1": conv_vicuna_v1,
|
170 |
+
"vicuna_v1": conv_vicuna_v1,
|
171 |
+
"plain": conv_llava_plain,
|
172 |
+
}
|
173 |
+
|
174 |
+
|
175 |
+
CONVERSATION_MODE_MAPPING = {
|
176 |
+
"vila1.5-3b": "vicuna_v1",
|
177 |
+
"vila1.5-8b": "llama_3",
|
178 |
+
"vila1.5-13b": "vicuna_v1",
|
179 |
+
"vila1.5-40b": "hermes-2",
|
180 |
+
"llama-3": "llama_3",
|
181 |
+
"llama3": "llama_3",
|
182 |
+
}
|
183 |
+
|
184 |
+
|
185 |
+
def auto_set_conversation_mode(model_name_or_path: str) -> str:
|
186 |
+
global default_conversation
|
187 |
+
for k, v in CONVERSATION_MODE_MAPPING.items():
|
188 |
+
if k in model_name_or_path.lower():
|
189 |
+
print(f"Setting conversation mode to `{v}` based on model name/path `{model_name_or_path}`.")
|
190 |
+
default_conversation = conv_templates[v]
|
191 |
+
return
|
llm/added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644,
|
5 |
+
"[BOS]": 151646,
|
6 |
+
"[PAD]": 151647
|
7 |
+
}
|
llm/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/llm",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8960,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_max_length": 4096,
|
16 |
+
"model_type": "qwen2",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 2,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000.0,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": true,
|
25 |
+
"tokenizer_model_max_length": 4096,
|
26 |
+
"tokenizer_padding_side": "right",
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.46.0",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_sliding_window": false,
|
31 |
+
"vocab_size": 151648
|
32 |
+
}
|
llm/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.46.0"
|
14 |
+
}
|
llm/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llm/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe90977102f7c2ffc3c0c9fff9cb6bad16937a2e93c49a0a41976fc2a50dd077
|
3 |
+
size 3086582408
|
llm/special_tokens_map.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "[BOS]",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|im_end|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "[PAD]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
}
|
27 |
+
}
|
llm/tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "[BOS]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "[PAD]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"additional_special_tokens": [
|
46 |
+
"<|im_start|>",
|
47 |
+
"<|im_end|>"
|
48 |
+
],
|
49 |
+
"bos_token": "[BOS]",
|
50 |
+
"chat_template": "{% if messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages if message['content'] is not none %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}",
|
51 |
+
"clean_up_tokenization_spaces": false,
|
52 |
+
"eos_token": "<|im_end|>",
|
53 |
+
"errors": "replace",
|
54 |
+
"legacy": false,
|
55 |
+
"model_max_length": 4096,
|
56 |
+
"pad_token": "[PAD]",
|
57 |
+
"padding_side": "right",
|
58 |
+
"split_special_tokens": false,
|
59 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
60 |
+
"unk_token": null
|
61 |
+
}
|
llm/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
main.py
ADDED
File without changes
|
media.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import Any, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import PIL
|
9 |
+
import PIL.Image
|
10 |
+
import requests
|
11 |
+
from transformers import PretrainedConfig
|
12 |
+
|
13 |
+
# from llava.constants import MEDIA_TOKENS
|
14 |
+
# from llava.media import Image, Video
|
15 |
+
# from llava.utils import make_list
|
16 |
+
# from llava.utils.logging import logger
|
17 |
+
|
18 |
+
MEDIA_TOKENS = {
|
19 |
+
"image": "<image>",
|
20 |
+
"video": "<vila/video>",
|
21 |
+
}
|
22 |
+
|
23 |
+
class Media:
|
24 |
+
pass
|
25 |
+
|
26 |
+
class File(Media):
|
27 |
+
def __init__(self, path: str) -> None:
|
28 |
+
self.path = path
|
29 |
+
|
30 |
+
class Image(File):
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
class Video(File):
|
35 |
+
pass
|
36 |
+
|
37 |
+
def make_list(obj: Any) -> List:
|
38 |
+
return obj if isinstance(obj, list) else [obj]
|
39 |
+
|
40 |
+
|
41 |
+
def _extract_image(image: Union[Image, PIL.Image.Image]) -> PIL.Image.Image:
|
42 |
+
if isinstance(image, Image):
|
43 |
+
if image.path.startswith("http://") or image.path.startswith("https://"):
|
44 |
+
image = PIL.Image.open(requests.get(image.path, stream=True).raw)
|
45 |
+
else:
|
46 |
+
image = PIL.Image.open(image.path)
|
47 |
+
return image
|
48 |
+
|
49 |
+
|
50 |
+
def _load_video(video_path: str, *, num_frames: int) -> List[PIL.Image.Image]:
|
51 |
+
# Load video frames from a directory
|
52 |
+
if os.path.isdir(video_path):
|
53 |
+
frame_paths = sorted(glob.glob(os.path.join(video_path, "*")))
|
54 |
+
indices = np.round(np.linspace(0, len(frame_paths) - 1, num_frames)).astype(int)
|
55 |
+
return [PIL.Image.open(frame_paths[index]) for index in indices]
|
56 |
+
|
57 |
+
# Load video frames from a video file
|
58 |
+
vidcap = cv2.VideoCapture(video_path)
|
59 |
+
|
60 |
+
# Find the last frame as frame count might not be accurate
|
61 |
+
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
62 |
+
while frame_count > 0:
|
63 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
|
64 |
+
if vidcap.grab():
|
65 |
+
break
|
66 |
+
frame_count -= 1
|
67 |
+
else:
|
68 |
+
raise ValueError(f"Video '{video_path}' has no frames.")
|
69 |
+
|
70 |
+
# Extract frames uniformly
|
71 |
+
indices = np.round(np.linspace(0, frame_count - 1, num_frames)).astype(int)
|
72 |
+
frames = {}
|
73 |
+
for index in indices:
|
74 |
+
if index in frames:
|
75 |
+
continue
|
76 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, index)
|
77 |
+
success, frame = vidcap.read()
|
78 |
+
if not success:
|
79 |
+
print(f"Failed to read frame {index} from video '{video_path}'. Skipped.")
|
80 |
+
continue
|
81 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
82 |
+
frames[index] = PIL.Image.fromarray(frame)
|
83 |
+
return [frames[index] for index in indices if index in frames]
|
84 |
+
|
85 |
+
|
86 |
+
def _extract_video(video: Video, config: PretrainedConfig) -> List[PIL.Image.Image]:
|
87 |
+
num_frames = config.num_video_frames
|
88 |
+
if getattr(config, "fps") != 0:
|
89 |
+
print("Extracting frames from video with specified FPS is not supported yet. Ignored.")
|
90 |
+
|
91 |
+
frames = _load_video(video.path, num_frames=num_frames)
|
92 |
+
return frames
|
93 |
+
|
94 |
+
|
95 |
+
def extract_media(
|
96 |
+
messages: List[Dict[str, Any]],
|
97 |
+
config: Optional[PretrainedConfig] = None,
|
98 |
+
draft: bool = False,
|
99 |
+
) -> Dict[str, List[Any]]:
|
100 |
+
media = defaultdict(list)
|
101 |
+
for message in messages:
|
102 |
+
text = ""
|
103 |
+
for part in make_list(message["value"]):
|
104 |
+
if isinstance(part, str):
|
105 |
+
for token in MEDIA_TOKENS.values():
|
106 |
+
if token in part:
|
107 |
+
print(f"Media token '{token}' found in text: '{part}'. Removed.")
|
108 |
+
part = part.replace(token, "").strip()
|
109 |
+
text += part
|
110 |
+
elif isinstance(part, (Image, PIL.Image.Image)):
|
111 |
+
if draft:
|
112 |
+
media["image"].append(part)
|
113 |
+
else:
|
114 |
+
media["image"].append(_extract_image(part))
|
115 |
+
text += MEDIA_TOKENS["image"]
|
116 |
+
elif isinstance(part, Video):
|
117 |
+
if draft:
|
118 |
+
media["video"].append(part)
|
119 |
+
else:
|
120 |
+
media["video"].append(_extract_video(part, config))
|
121 |
+
text += MEDIA_TOKENS["video"]
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Unsupported prompt part type: {type(part)}")
|
124 |
+
message["value"] = text
|
125 |
+
return media
|
media_encoder.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from functools import partial
|
4 |
+
from typing import Any, Dict, List, Optional
|
5 |
+
|
6 |
+
|
7 |
+
class BaseEncoder(nn.Module):
|
8 |
+
def __init__(self, parent: nn.Module) -> None:
|
9 |
+
super().__init__()
|
10 |
+
self._parent = [parent]
|
11 |
+
|
12 |
+
@property
|
13 |
+
def parent(self) -> nn.Module:
|
14 |
+
return self._parent[0]
|
15 |
+
|
16 |
+
|
17 |
+
class BasicImageEncoder(BaseEncoder):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
parent: torch.nn.Module,
|
21 |
+
start_tokens: Optional[str] = None,
|
22 |
+
end_tokens: Optional[str] = "\n",
|
23 |
+
) -> None:
|
24 |
+
super().__init__(parent)
|
25 |
+
self.start_tokens = start_tokens
|
26 |
+
self.end_tokens = end_tokens
|
27 |
+
|
28 |
+
def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
|
29 |
+
if tokens is None:
|
30 |
+
return None
|
31 |
+
token_ids = self.parent.tokenizer(tokens).input_ids
|
32 |
+
token_ids = torch.tensor(token_ids, device=self.parent.device)
|
33 |
+
return self.parent.llm.model.embed_tokens(token_ids)
|
34 |
+
|
35 |
+
def _process_features(
|
36 |
+
self,
|
37 |
+
features: torch.Tensor,
|
38 |
+
start_token_embeds: Optional[torch.Tensor],
|
39 |
+
end_token_embeds: Optional[torch.Tensor],
|
40 |
+
) -> torch.Tensor:
|
41 |
+
if start_token_embeds is not None:
|
42 |
+
features = torch.cat([start_token_embeds, features], dim=0)
|
43 |
+
if end_token_embeds is not None:
|
44 |
+
features = torch.cat([features, end_token_embeds], dim=0)
|
45 |
+
return features
|
46 |
+
|
47 |
+
def forward(self, images: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
|
48 |
+
images = torch.stack(images, dim=0)
|
49 |
+
features = self.parent.encode_images(images, block_sizes=config.get("block_sizes"))
|
50 |
+
process_features = partial(
|
51 |
+
self._process_features,
|
52 |
+
start_token_embeds=self.embed_tokens(self.start_tokens),
|
53 |
+
end_token_embeds=self.embed_tokens(self.end_tokens),
|
54 |
+
)
|
55 |
+
return [process_features(f) for f in features]
|
56 |
+
|
57 |
+
|
58 |
+
class BasicVideoEncoder(BaseEncoder):
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
parent: torch.nn.Module,
|
62 |
+
start_tokens: Optional[str] = None,
|
63 |
+
end_tokens: Optional[str] = "\n",
|
64 |
+
) -> None:
|
65 |
+
super().__init__(parent)
|
66 |
+
self.start_tokens = start_tokens
|
67 |
+
self.end_tokens = end_tokens
|
68 |
+
|
69 |
+
def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
|
70 |
+
if tokens is None:
|
71 |
+
return None
|
72 |
+
token_ids = self.parent.tokenizer(tokens).input_ids
|
73 |
+
token_ids = torch.tensor(token_ids, device=self.parent.device)
|
74 |
+
return self.parent.llm.model.embed_tokens(token_ids)
|
75 |
+
|
76 |
+
def _process_features(
|
77 |
+
self,
|
78 |
+
features: torch.Tensor,
|
79 |
+
start_token_embeds: Optional[torch.Tensor],
|
80 |
+
end_token_embeds: Optional[torch.Tensor],
|
81 |
+
) -> torch.Tensor:
|
82 |
+
if start_token_embeds is not None:
|
83 |
+
start_embeds = torch.stack([start_token_embeds] * features.shape[0], dim=0)
|
84 |
+
features = torch.cat([start_embeds, features], dim=1)
|
85 |
+
if end_token_embeds is not None:
|
86 |
+
end_embeds = torch.stack([end_token_embeds] * features.shape[0], dim=0)
|
87 |
+
features = torch.cat([features, end_embeds], dim=1)
|
88 |
+
return features.flatten(0, 1)
|
89 |
+
|
90 |
+
def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
|
91 |
+
num_frames = [video.shape[0] for video in videos]
|
92 |
+
images = torch.cat(videos, dim=0)
|
93 |
+
features = self.parent.encode_images(images)
|
94 |
+
features = torch.split(features, num_frames)
|
95 |
+
process_features = partial(
|
96 |
+
self._process_features,
|
97 |
+
start_token_embeds=self.embed_tokens(self.start_tokens),
|
98 |
+
end_token_embeds=self.embed_tokens(self.end_tokens),
|
99 |
+
)
|
100 |
+
return [process_features(f) for f in features]
|
mm_projector/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/mm_projector",
|
3 |
+
"architectures": [
|
4 |
+
"MultimodalProjector"
|
5 |
+
],
|
6 |
+
"mm_projector_type": "mlp_downsample_3x3_fix",
|
7 |
+
"model_type": "v2l_projector",
|
8 |
+
"torch_dtype": "bfloat16",
|
9 |
+
"transformers_version": "4.46.0"
|
10 |
+
}
|
mm_projector/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:191ffde694a269d7b0ca2f1e30da5d5fecf2a9bb8f4879fbf0b780368c6a9cc4
|
3 |
+
size 87068272
|
mm_utils.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
# dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
|
18 |
+
|
19 |
+
import base64
|
20 |
+
import os
|
21 |
+
import tempfile
|
22 |
+
from io import BytesIO
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
from PIL import Image
|
27 |
+
from transformers import StoppingCriteria
|
28 |
+
|
29 |
+
from llava.constants import DEFAULT_IMAGE_TOKEN
|
30 |
+
|
31 |
+
|
32 |
+
def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
|
33 |
+
import cv2
|
34 |
+
|
35 |
+
if fps == None or frame_count == None:
|
36 |
+
# if one of fps or frame_count is None, still recompute
|
37 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
38 |
+
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
39 |
+
if fps == 0 or frame_count == 0:
|
40 |
+
print(f"Video file not found. return empty images. {video_file_name}")
|
41 |
+
return [
|
42 |
+
Image.new("RGB", (720, 720)),
|
43 |
+
] * num_frames, 0
|
44 |
+
|
45 |
+
duration = frame_count / fps
|
46 |
+
frame_interval = frame_count // num_frames
|
47 |
+
if frame_interval == 0 and frame_count <= 1:
|
48 |
+
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
|
49 |
+
return [
|
50 |
+
Image.new("RGB", (720, 720)),
|
51 |
+
] * num_frames, 0
|
52 |
+
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
|
53 |
+
|
54 |
+
images = []
|
55 |
+
count = 0
|
56 |
+
success = True
|
57 |
+
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
|
58 |
+
while success:
|
59 |
+
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
|
60 |
+
if frame_count >= num_frames:
|
61 |
+
success, frame = vidcap.read()
|
62 |
+
if count in frame_indices:
|
63 |
+
try:
|
64 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
65 |
+
im_pil = Image.fromarray(img)
|
66 |
+
images.append(im_pil)
|
67 |
+
except BaseException:
|
68 |
+
continue
|
69 |
+
if len(images) >= num_frames:
|
70 |
+
return images, num_frames
|
71 |
+
count += 1
|
72 |
+
else:
|
73 |
+
# Left padding frames if the video is not long enough
|
74 |
+
success, frame = vidcap.read()
|
75 |
+
if success:
|
76 |
+
try:
|
77 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
78 |
+
im_pil = Image.fromarray(img)
|
79 |
+
images.append(im_pil)
|
80 |
+
except BaseException:
|
81 |
+
continue
|
82 |
+
count += 1
|
83 |
+
else:
|
84 |
+
break
|
85 |
+
if len(images) == 0:
|
86 |
+
raise ValueError("Did not find enough frames in the video. return empty image.")
|
87 |
+
|
88 |
+
return images, len(images)
|
89 |
+
|
90 |
+
|
91 |
+
def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
|
92 |
+
"""
|
93 |
+
num_frames is the max number of frames the model can support.
|
94 |
+
frame_count is the number of frames in the input video.
|
95 |
+
max_fps is the max FPS of the model can support.
|
96 |
+
fps is the fps of the input video.
|
97 |
+
"""
|
98 |
+
|
99 |
+
import random
|
100 |
+
|
101 |
+
import cv2
|
102 |
+
|
103 |
+
if fps == None or frame_count == None:
|
104 |
+
# if one of fps or frame_count is None, still recompute
|
105 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
106 |
+
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
107 |
+
|
108 |
+
if fps == 0 or frame_count == 0:
|
109 |
+
print(f"Video file not found. return empty images. {video_file_name}")
|
110 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
111 |
+
return [
|
112 |
+
Image.new("RGB", (720, 720)),
|
113 |
+
] * empty_video_frames, 0
|
114 |
+
|
115 |
+
duration = frame_count / fps
|
116 |
+
# print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
|
117 |
+
# If the video is too long (longer than max_fps and num_frames can support),
|
118 |
+
# we will use lower fps to sample frames.
|
119 |
+
if duration >= num_frames / max_fps:
|
120 |
+
frame_interval = frame_count // num_frames
|
121 |
+
|
122 |
+
# If the video is too short, we will skip the video if there is only one frame.
|
123 |
+
if frame_interval == 0 and frame_count <= 1:
|
124 |
+
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
|
125 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
126 |
+
return [
|
127 |
+
Image.new("RGB", (720, 720)),
|
128 |
+
] * empty_video_frames, 0
|
129 |
+
|
130 |
+
images = []
|
131 |
+
count = 0
|
132 |
+
success = True
|
133 |
+
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
|
134 |
+
|
135 |
+
while success:
|
136 |
+
if frame_count >= num_frames:
|
137 |
+
# success, frame = vidcap.read()
|
138 |
+
if count in frame_indices:
|
139 |
+
success, frame = vidcap.read()
|
140 |
+
try:
|
141 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
142 |
+
im_pil = Image.fromarray(img)
|
143 |
+
images.append(im_pil)
|
144 |
+
except:
|
145 |
+
# print("Failed to read frame:", count)
|
146 |
+
continue
|
147 |
+
if len(images) >= num_frames:
|
148 |
+
return images, num_frames
|
149 |
+
else:
|
150 |
+
success = vidcap.grab()
|
151 |
+
count += 1
|
152 |
+
else:
|
153 |
+
# Left padding frames if the video is not long enough
|
154 |
+
success, frame = vidcap.read()
|
155 |
+
if success:
|
156 |
+
try:
|
157 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
158 |
+
im_pil = Image.fromarray(img)
|
159 |
+
images.append(im_pil)
|
160 |
+
except:
|
161 |
+
# print("Failed to read frame:", count)
|
162 |
+
continue
|
163 |
+
count += 1
|
164 |
+
else:
|
165 |
+
break
|
166 |
+
else:
|
167 |
+
frames_required = int(duration * max_fps)
|
168 |
+
frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
|
169 |
+
if frames_required == 0:
|
170 |
+
print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
|
171 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
172 |
+
return [
|
173 |
+
Image.new("RGB", (720, 720)),
|
174 |
+
] * empty_video_frames, 0
|
175 |
+
elif frames_required == 1:
|
176 |
+
frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
|
177 |
+
images = []
|
178 |
+
count = 0
|
179 |
+
looked = 0
|
180 |
+
success = True
|
181 |
+
|
182 |
+
while success:
|
183 |
+
success, frame = vidcap.read()
|
184 |
+
if success and (looked in frame_indices):
|
185 |
+
try:
|
186 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
187 |
+
im_pil = Image.fromarray(img)
|
188 |
+
images.append(im_pil)
|
189 |
+
except:
|
190 |
+
continue
|
191 |
+
count += 1
|
192 |
+
looked += 1
|
193 |
+
|
194 |
+
if len(images) == 0:
|
195 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
196 |
+
return [
|
197 |
+
Image.new("RGB", (720, 720)),
|
198 |
+
] * empty_video_frames, 0
|
199 |
+
else:
|
200 |
+
return images, len(images)
|
201 |
+
|
202 |
+
|
203 |
+
def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
|
204 |
+
"""
|
205 |
+
Extract frames from a video using OpenCV.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
|
209 |
+
frames (int): Number of frames to extract from the video.
|
210 |
+
fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
list: List of PIL Images extracted from the video.
|
214 |
+
|
215 |
+
Raises:
|
216 |
+
NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
|
217 |
+
"""
|
218 |
+
import cv2
|
219 |
+
|
220 |
+
if isinstance(vpath_or_bytesio, str):
|
221 |
+
vidcap = cv2.VideoCapture(vpath_or_bytesio)
|
222 |
+
if max_fps > 0.0:
|
223 |
+
return get_frame_from_vcap_with_fps(
|
224 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
|
225 |
+
)
|
226 |
+
return get_frame_from_vcap(
|
227 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
|
228 |
+
)
|
229 |
+
elif isinstance(vpath_or_bytesio, (BytesIO,)):
|
230 |
+
# assuming mp4
|
231 |
+
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
|
232 |
+
temp_video.write(vpath_or_bytesio.read())
|
233 |
+
temp_video_name = temp_video.name
|
234 |
+
vidcap = cv2.VideoCapture(temp_video_name)
|
235 |
+
if max_fps > 0.0:
|
236 |
+
return get_frame_from_vcap_with_fps(
|
237 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
|
238 |
+
)
|
239 |
+
return get_frame_from_vcap(
|
240 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
raise NotImplementedError(type(vpath_or_bytesio))
|
244 |
+
|
245 |
+
|
246 |
+
def load_image_from_base64(image):
|
247 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
248 |
+
|
249 |
+
|
250 |
+
def expand2square(pil_img, background_color):
|
251 |
+
"""
|
252 |
+
Expand the given PIL image to a square shape by adding padding.
|
253 |
+
|
254 |
+
Parameters:
|
255 |
+
- pil_img: The PIL image to be expanded.
|
256 |
+
- background_color: The color of the padding to be added.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
- The expanded PIL image.
|
260 |
+
|
261 |
+
If the image is already square, it is returned as is.
|
262 |
+
If the image is wider than it is tall, padding is added to the top and bottom.
|
263 |
+
If the image is taller than it is wide, padding is added to the left and right.
|
264 |
+
"""
|
265 |
+
width, height = pil_img.size
|
266 |
+
if pil_img.mode == "L":
|
267 |
+
background_color = background_color[0]
|
268 |
+
if width == height:
|
269 |
+
return pil_img
|
270 |
+
elif width > height:
|
271 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
272 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
273 |
+
return result
|
274 |
+
else:
|
275 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
276 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
277 |
+
return result
|
278 |
+
|
279 |
+
|
280 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
281 |
+
best_ratio_diff = float("inf")
|
282 |
+
best_ratio = (1, 1)
|
283 |
+
area = width * height
|
284 |
+
for ratio in target_ratios:
|
285 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
286 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
287 |
+
if ratio_diff < best_ratio_diff:
|
288 |
+
best_ratio_diff = ratio_diff
|
289 |
+
best_ratio = ratio
|
290 |
+
elif ratio_diff == best_ratio_diff:
|
291 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
292 |
+
best_ratio = ratio
|
293 |
+
return best_ratio
|
294 |
+
|
295 |
+
|
296 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
|
297 |
+
orig_width, orig_height = image.size
|
298 |
+
aspect_ratio = orig_width / orig_height
|
299 |
+
|
300 |
+
# calculate the existing image aspect ratio
|
301 |
+
target_ratios = {
|
302 |
+
(i, j)
|
303 |
+
for n in range(min_num, max_num + 1)
|
304 |
+
for i in range(1, n + 1)
|
305 |
+
for j in range(1, n + 1)
|
306 |
+
if i * j <= max_num and i * j >= min_num
|
307 |
+
}
|
308 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
309 |
+
|
310 |
+
# find the closest aspect ratio to the target
|
311 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
312 |
+
|
313 |
+
# calculate the target width and height
|
314 |
+
target_width = image_size * target_aspect_ratio[0]
|
315 |
+
target_height = image_size * target_aspect_ratio[1]
|
316 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
317 |
+
|
318 |
+
# resize the image
|
319 |
+
resized_img = image.resize((target_width, target_height))
|
320 |
+
processed_images = []
|
321 |
+
for i in range(blocks):
|
322 |
+
box = (
|
323 |
+
(i % (target_width // image_size)) * image_size,
|
324 |
+
(i // (target_width // image_size)) * image_size,
|
325 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
326 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
327 |
+
)
|
328 |
+
# split the image
|
329 |
+
split_img = resized_img.crop(box)
|
330 |
+
processed_images.append(split_img)
|
331 |
+
assert len(processed_images) == blocks
|
332 |
+
if use_thumbnail and len(processed_images) != 1:
|
333 |
+
thumbnail_img = image.resize((image_size, image_size))
|
334 |
+
processed_images.append(thumbnail_img)
|
335 |
+
return processed_images
|
336 |
+
|
337 |
+
|
338 |
+
def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
|
339 |
+
orig_width, orig_height = image.size
|
340 |
+
aspect_ratio = orig_width / orig_height
|
341 |
+
min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
|
342 |
+
|
343 |
+
processed_images = []
|
344 |
+
|
345 |
+
##########################################################################################
|
346 |
+
############# Add tiles for all but the last scale using fixed squre ratio ###############
|
347 |
+
##########################################################################################
|
348 |
+
|
349 |
+
for scale in s2_scales[:-1]:
|
350 |
+
target_width = image_size * (scale // s2_scales[0])
|
351 |
+
target_height = image_size * (scale // s2_scales[0])
|
352 |
+
blocks = (scale // s2_scales[0]) ** 2
|
353 |
+
|
354 |
+
# resize the image
|
355 |
+
resized_img = image.resize((target_width, target_height))
|
356 |
+
for i in range(blocks):
|
357 |
+
box = (
|
358 |
+
(i % (target_width // image_size)) * image_size,
|
359 |
+
(i // (target_width // image_size)) * image_size,
|
360 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
361 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
362 |
+
)
|
363 |
+
# split the image
|
364 |
+
split_img = resized_img.crop(box)
|
365 |
+
processed_images.append(split_img)
|
366 |
+
|
367 |
+
##########################################################################################
|
368 |
+
################ Add tiles for the last scale using dynamic aspect ratio #################
|
369 |
+
##########################################################################################
|
370 |
+
|
371 |
+
# calculate the existing image aspect ratio
|
372 |
+
target_ratios = {
|
373 |
+
(i, j)
|
374 |
+
for n in range(min_num, max_num + 1)
|
375 |
+
for i in range(1, n + 1)
|
376 |
+
for j in range(1, n + 1)
|
377 |
+
if i * j <= max_num and i * j >= min_num
|
378 |
+
}
|
379 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
380 |
+
|
381 |
+
# find the closest aspect ratio to the target
|
382 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
383 |
+
|
384 |
+
# calculate the target width and height
|
385 |
+
target_width = image_size * target_aspect_ratio[0]
|
386 |
+
target_height = image_size * target_aspect_ratio[1]
|
387 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
388 |
+
|
389 |
+
# resize the image
|
390 |
+
resized_img = image.resize((target_width, target_height))
|
391 |
+
for i in range(blocks):
|
392 |
+
box = (
|
393 |
+
(i % (target_width // image_size)) * image_size,
|
394 |
+
(i // (target_width // image_size)) * image_size,
|
395 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
396 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
397 |
+
)
|
398 |
+
# split the image
|
399 |
+
split_img = resized_img.crop(box)
|
400 |
+
processed_images.append(split_img)
|
401 |
+
|
402 |
+
return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
|
403 |
+
|
404 |
+
|
405 |
+
def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None):
|
406 |
+
prompt = prompt.split(DEFAULT_IMAGE_TOKEN)
|
407 |
+
idx = 0
|
408 |
+
all_images = []
|
409 |
+
for img in images:
|
410 |
+
processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles)
|
411 |
+
all_images.append(processed_images)
|
412 |
+
prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0])
|
413 |
+
idx += 2
|
414 |
+
prompt = "".join(prompt)
|
415 |
+
if all_images:
|
416 |
+
all_images = torch.cat(all_images)
|
417 |
+
else:
|
418 |
+
all_images = None
|
419 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "")
|
420 |
+
return all_images, prompt
|
421 |
+
|
422 |
+
|
423 |
+
def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None):
|
424 |
+
idx = 0
|
425 |
+
all_images = []
|
426 |
+
all_block_size = []
|
427 |
+
for img in images:
|
428 |
+
processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
|
429 |
+
all_images.append(processed_images)
|
430 |
+
all_block_size.append(block_size)
|
431 |
+
idx += 2
|
432 |
+
if all_images:
|
433 |
+
all_images = torch.cat(all_images)
|
434 |
+
else:
|
435 |
+
all_images = None
|
436 |
+
return all_images, all_block_size
|
437 |
+
|
438 |
+
|
439 |
+
def process_image(
|
440 |
+
image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
|
441 |
+
):
|
442 |
+
processor = data_args.image_processor
|
443 |
+
if isinstance(image_file, str):
|
444 |
+
if image_folder is not None:
|
445 |
+
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
|
446 |
+
else:
|
447 |
+
image = Image.open(image_file).convert("RGB")
|
448 |
+
else:
|
449 |
+
# image is stored in bytearray
|
450 |
+
image = image_file
|
451 |
+
image = image.convert("RGB")
|
452 |
+
if hasattr(data_args.image_processor, "crop_size"):
|
453 |
+
# CLIP vision tower
|
454 |
+
crop_size = data_args.image_processor.crop_size
|
455 |
+
else:
|
456 |
+
# SIGLIP vision tower
|
457 |
+
assert hasattr(data_args.image_processor, "size")
|
458 |
+
crop_size = data_args.image_processor.size
|
459 |
+
if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
|
460 |
+
assert crop_size["height"] == crop_size["width"]
|
461 |
+
images, block_size = dynamic_s2_preprocess(
|
462 |
+
image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
|
463 |
+
)
|
464 |
+
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
|
465 |
+
return torch.stack(images), block_size
|
466 |
+
if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
|
467 |
+
assert crop_size["height"] == crop_size["width"]
|
468 |
+
if max_tiles is not None:
|
469 |
+
max_num = max_tiles
|
470 |
+
else:
|
471 |
+
max_num = data_args.max_tiles
|
472 |
+
images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
|
473 |
+
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
|
474 |
+
return torch.stack(images)
|
475 |
+
|
476 |
+
if data_args.image_aspect_ratio == "resize":
|
477 |
+
image = image.resize((crop_size["width"], crop_size["height"]))
|
478 |
+
if data_args.image_aspect_ratio == "pad":
|
479 |
+
|
480 |
+
def expand2square(pil_img, background_color):
|
481 |
+
width, height = pil_img.size
|
482 |
+
if width == height:
|
483 |
+
return pil_img
|
484 |
+
elif width > height:
|
485 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
486 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
487 |
+
return result
|
488 |
+
else:
|
489 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
490 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
491 |
+
return result
|
492 |
+
|
493 |
+
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
|
494 |
+
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
|
495 |
+
else:
|
496 |
+
# Using default behavior of the vision encoder
|
497 |
+
# For CLIP, default is central crop
|
498 |
+
# For Radio, default is central crop
|
499 |
+
# For Siglip, default is resize
|
500 |
+
# For InternVIT, default is resize
|
501 |
+
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
|
502 |
+
return image
|
503 |
+
|
504 |
+
|
505 |
+
def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
|
506 |
+
model_cfg.image_processor = image_processor
|
507 |
+
new_images = [
|
508 |
+
process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
|
509 |
+
for image in images
|
510 |
+
]
|
511 |
+
|
512 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
513 |
+
if len(new_images[0].shape) == 4:
|
514 |
+
new_images = torch.cat(new_images, dim=0)
|
515 |
+
elif len(new_images[0].shape) == 3:
|
516 |
+
new_images = torch.stack(new_images, dim=0)
|
517 |
+
else:
|
518 |
+
raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
|
519 |
+
else:
|
520 |
+
raise ValueError("The shape of images in new_images is different!")
|
521 |
+
return new_images
|
522 |
+
|
523 |
+
|
524 |
+
def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
|
525 |
+
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
|
526 |
+
|
527 |
+
|
528 |
+
def is_gemma_tokenizer(tokenizer):
|
529 |
+
return "gemma" in tokenizer.__class__.__name__.lower()
|
530 |
+
|
531 |
+
|
532 |
+
def get_model_name_from_path(model_path):
|
533 |
+
model_path = model_path.strip("/")
|
534 |
+
model_paths = model_path.split("/")
|
535 |
+
if model_paths[-1].startswith("checkpoint-"):
|
536 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
537 |
+
else:
|
538 |
+
return model_paths[-1]
|
539 |
+
|
540 |
+
|
541 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
542 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
543 |
+
self.keywords = keywords
|
544 |
+
self.keyword_ids = []
|
545 |
+
self.max_keyword_len = 0
|
546 |
+
for keyword in keywords:
|
547 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
548 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
549 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
550 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
551 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
552 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
553 |
+
self.tokenizer = tokenizer
|
554 |
+
self.start_len = input_ids.shape[1]
|
555 |
+
|
556 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
557 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
558 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
559 |
+
for keyword_id in self.keyword_ids:
|
560 |
+
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
|
561 |
+
return True
|
562 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
563 |
+
for keyword in self.keywords:
|
564 |
+
if keyword in outputs:
|
565 |
+
return True
|
566 |
+
return False
|
567 |
+
|
568 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
569 |
+
outputs = []
|
570 |
+
for i in range(output_ids.shape[0]):
|
571 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
572 |
+
return all(outputs)
|
modeling_vila.py
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import copy
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import os.path as osp
|
9 |
+
import warnings
|
10 |
+
from abc import ABC
|
11 |
+
from collections import OrderedDict, defaultdict, deque
|
12 |
+
from copy import deepcopy
|
13 |
+
from itertools import chain
|
14 |
+
from threading import Thread
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.distributed as dist
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torchvision
|
22 |
+
from einops import rearrange
|
23 |
+
from PIL import Image
|
24 |
+
|
25 |
+
from transformers import (
|
26 |
+
AutoConfig,
|
27 |
+
AutoModel,
|
28 |
+
AutoProcessor,
|
29 |
+
AutoTokenizer,
|
30 |
+
GenerationConfig,
|
31 |
+
LogitsProcessor,
|
32 |
+
PretrainedConfig,
|
33 |
+
PreTrainedModel,
|
34 |
+
Qwen2Config,
|
35 |
+
Qwen2ForCausalLM,
|
36 |
+
Qwen2PreTrainedModel,
|
37 |
+
TextIteratorStreamer
|
38 |
+
)
|
39 |
+
from transformers.modeling_utils import ContextManagers, no_init_weights
|
40 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
41 |
+
|
42 |
+
from .base_projector import MultimodalProjector, MultimodalProjectorConfig
|
43 |
+
from .builder import build_llm_and_tokenizer
|
44 |
+
from .configuration_vila import VILAConfig
|
45 |
+
from .media_encoder import BasicImageEncoder, BasicVideoEncoder
|
46 |
+
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
|
47 |
+
from .utils import get_model_config
|
48 |
+
from .media import extract_media
|
49 |
+
from .mm_utils import process_image, process_images
|
50 |
+
from .tokenizer_utils import tokenize_conversation
|
51 |
+
from .constants import *
|
52 |
+
from .conversation import default_conversation, SeparatorStyle
|
53 |
+
|
54 |
+
# from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
|
55 |
+
# quick hack for remote code
|
56 |
+
def get_pg_manager():
|
57 |
+
return None
|
58 |
+
|
59 |
+
def get_model_weights_dtype(model: nn.Module):
|
60 |
+
pass
|
61 |
+
|
62 |
+
|
63 |
+
def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
|
64 |
+
if model_type_or_path is None:
|
65 |
+
return None
|
66 |
+
## load from pretrained model
|
67 |
+
if config.resume_path:
|
68 |
+
assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!"
|
69 |
+
return MultimodalProjector.from_pretrained(model_type_or_path, config)
|
70 |
+
## build from scratch
|
71 |
+
else:
|
72 |
+
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
|
73 |
+
mm_projector = MultimodalProjector(mm_projector_cfg, config)
|
74 |
+
return mm_projector
|
75 |
+
|
76 |
+
|
77 |
+
def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
|
78 |
+
## skip vision tower instantiation
|
79 |
+
if model_name_or_path is None:
|
80 |
+
return None
|
81 |
+
|
82 |
+
vision_tower_arch = None
|
83 |
+
if config.resume_path and "radio" not in model_name_or_path:
|
84 |
+
assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!"
|
85 |
+
vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
86 |
+
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
|
87 |
+
vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path
|
88 |
+
|
89 |
+
use_s2 = getattr(config, "s2", False)
|
90 |
+
use_dynamic_s2 = getattr(config, "dynamic_s2", False)
|
91 |
+
|
92 |
+
if "siglip" in vision_tower_name:
|
93 |
+
if use_dynamic_s2:
|
94 |
+
vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config)
|
95 |
+
elif use_s2:
|
96 |
+
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
|
97 |
+
else:
|
98 |
+
vision_tower = SiglipVisionTower(model_name_or_path, config)
|
99 |
+
else:
|
100 |
+
raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}")
|
101 |
+
|
102 |
+
config.mm_hidden_size = (
|
103 |
+
vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size
|
104 |
+
)
|
105 |
+
return vision_tower
|
106 |
+
|
107 |
+
|
108 |
+
class VILAPretrainedModel(PreTrainedModel):
|
109 |
+
config_class = VILAConfig
|
110 |
+
main_input_name = "input_embeds"
|
111 |
+
supports_gradient_checkpointing = True
|
112 |
+
_supports_flash_attn_2 = True
|
113 |
+
|
114 |
+
def __init__(self, config: VILAConfig, *args, **kwargs):
|
115 |
+
super().__init__(config)
|
116 |
+
self.config = config
|
117 |
+
cfgs = get_model_config(config)
|
118 |
+
if len(cfgs) == 3:
|
119 |
+
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
|
120 |
+
else:
|
121 |
+
raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")
|
122 |
+
|
123 |
+
# loading on cpu by default
|
124 |
+
device_map = kwargs.get("device_map", "cpu")
|
125 |
+
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
|
126 |
+
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
|
127 |
+
if "auto" in device_map or "cuda" in device_map:
|
128 |
+
self.mm_projector = self.mm_projector.cuda()
|
129 |
+
self.vision_tower = self.vision_tower.cuda()
|
130 |
+
# set device_map auto can autoamtically shard llm to different devices
|
131 |
+
self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
|
132 |
+
|
133 |
+
self.encoders = {
|
134 |
+
"image": BasicImageEncoder(self),
|
135 |
+
"video": BasicVideoEncoder(self)
|
136 |
+
}
|
137 |
+
|
138 |
+
self.post_config()
|
139 |
+
self.is_loaded = True
|
140 |
+
|
141 |
+
assert (
|
142 |
+
self.llm is not None or self.vision_tower is not None or self.mm_projector is not None
|
143 |
+
), "At least one of the components must be instantiated."
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def convert_vila_dev_ckpt_to_remote(self, model_path: str, output_dir:str = None, *model_args, **kwargs):
|
147 |
+
# assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
|
148 |
+
from huggingface_hub import HfApi, snapshot_download
|
149 |
+
|
150 |
+
if os.path.isdir(model_path):
|
151 |
+
model_path = model_path
|
152 |
+
api = HfApi()
|
153 |
+
if api.repo_exists(model_path):
|
154 |
+
model_path = snapshot_download(model_path, local_dir=output_dir)
|
155 |
+
print("downloading HF model to", model_path)
|
156 |
+
|
157 |
+
cfg_path = os.path.join(model_path, "config.json")
|
158 |
+
config = json.load(open(cfg_path))
|
159 |
+
config["version"] = "2.0" # nvila tag
|
160 |
+
config["architectures"] = ["VILAForCasualLM"]
|
161 |
+
config["auto_map"] = {
|
162 |
+
"AutoConfig": "modeling_vila.VILAConfig",
|
163 |
+
"AutoModel": "modeling_vila.VILAForCasualLM",
|
164 |
+
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM"
|
165 |
+
}
|
166 |
+
config["model_type"] = "vila"
|
167 |
+
json.dump(config, open(cfg_path, "w"), indent=2)
|
168 |
+
self.copy_remote_py_files(model_path)
|
169 |
+
|
170 |
+
@classmethod
|
171 |
+
def copy_remote_py_files(cls, output_dir):
|
172 |
+
## copy .py and REAMDE for next loading remote code
|
173 |
+
current_file_path = os.path.abspath(__file__)
|
174 |
+
current_folder = os.path.dirname(current_file_path)
|
175 |
+
for file_name in os.listdir(current_folder):
|
176 |
+
if file_name.endswith(".py"):
|
177 |
+
full_file_name = os.path.join(current_folder, file_name)
|
178 |
+
if os.path.isfile(full_file_name):
|
179 |
+
shutil.copy(full_file_name, output_dir)
|
180 |
+
print("[HF remote code] copying", full_file_name, "to", output_dir)
|
181 |
+
|
182 |
+
def save_pretrained(self, output_dir, state_dict=None):
|
183 |
+
if state_dict is None:
|
184 |
+
# other wise fetch from deepspeed
|
185 |
+
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
|
186 |
+
state_dict = self.state_dict()
|
187 |
+
|
188 |
+
if getattr(self, "tokenizer", None):
|
189 |
+
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
|
190 |
+
|
191 |
+
if self.get_llm():
|
192 |
+
print(f"saving llm to {osp.join(output_dir, 'llm')}")
|
193 |
+
self.llm.config._name_or_path = osp.join(output_dir, "llm")
|
194 |
+
llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
|
195 |
+
self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
|
196 |
+
self.config.llm_cfg = self.llm.config
|
197 |
+
|
198 |
+
if self.get_vision_tower():
|
199 |
+
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
|
200 |
+
self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
|
201 |
+
vision_tower_state_dict = OrderedDict(
|
202 |
+
{k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
|
203 |
+
)
|
204 |
+
self.vision_tower.vision_tower.save_pretrained(
|
205 |
+
os.path.join(output_dir, "vision_tower"),
|
206 |
+
state_dict=vision_tower_state_dict,
|
207 |
+
)
|
208 |
+
self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
|
209 |
+
self.config.vision_tower_cfg = self.vision_tower.config
|
210 |
+
if hasattr(self.config.vision_tower_cfg, "auto_map"):
|
211 |
+
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
|
212 |
+
delattr(self.config.vision_tower_cfg, "auto_map")
|
213 |
+
|
214 |
+
if self.get_mm_projector():
|
215 |
+
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
|
216 |
+
self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
|
217 |
+
mm_projector_state_dict = OrderedDict(
|
218 |
+
{k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
|
219 |
+
)
|
220 |
+
self.mm_projector.save_pretrained(
|
221 |
+
os.path.join(output_dir, "mm_projector"),
|
222 |
+
state_dict=mm_projector_state_dict,
|
223 |
+
)
|
224 |
+
self.config.mm_projector_cfg = self.mm_projector.config
|
225 |
+
|
226 |
+
## update and save top-level config
|
227 |
+
self.config._name_or_path = output_dir
|
228 |
+
self.config.architectures = [self.__class__.__name__]
|
229 |
+
self.config.save_pretrained(output_dir)
|
230 |
+
|
231 |
+
## copy .py and REAMDE for next loading remote code
|
232 |
+
self.copy_remote_py_files(output_dir)
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
@classmethod
|
237 |
+
def from_pretrained(
|
238 |
+
cls,
|
239 |
+
pretrained_model_name_or_path: Optional[str] = None,
|
240 |
+
*model_args,
|
241 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
242 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
243 |
+
ignore_mismatched_sizes: bool = False,
|
244 |
+
force_download: bool = False,
|
245 |
+
local_files_only: bool = False,
|
246 |
+
token: Optional[Union[str, bool]] = None,
|
247 |
+
revision: str = "main",
|
248 |
+
use_safetensors: Optional[bool] = None,
|
249 |
+
weights_only: bool = True,
|
250 |
+
**kwargs,
|
251 |
+
):
|
252 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
|
253 |
+
return cls._from_config(config, **kwargs)
|
254 |
+
|
255 |
+
def init_llm(self, llm_config, config, *args, **kwargs):
|
256 |
+
self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs)
|
257 |
+
# hard coded for NVILA
|
258 |
+
# variables for XGrammar
|
259 |
+
# print("DEBUG", len(self.tokenizer.added_tokens_encoder.keys()), self.tokenizer.added_tokens_encoder.keys())
|
260 |
+
NUM_EXTRA_TOKENS = len(self.tokenizer.added_tokens_encoder.keys())
|
261 |
+
|
262 |
+
# TODO: SENTINEL_TOKEN is not added, need to check with Zhijian
|
263 |
+
self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS
|
264 |
+
# XGrammar tokenizer and grammar compiler
|
265 |
+
# lazy init only when specified json output during inference
|
266 |
+
self.grammar_compiler = None
|
267 |
+
|
268 |
+
self.llm.resize_token_embeddings(len(self.tokenizer))
|
269 |
+
return self.llm, self.tokenizer
|
270 |
+
|
271 |
+
def post_config(self):
|
272 |
+
######################################################################
|
273 |
+
# TODO: need to check dtype with jason
|
274 |
+
self.llm = self.llm.to(torch.float16)
|
275 |
+
self.mm_projector = self.mm_projector.to(torch.float16)
|
276 |
+
self.vision_tower = self.vision_tower.to(torch.float16)
|
277 |
+
######################################################################
|
278 |
+
self.training = self.llm.training
|
279 |
+
## configuration
|
280 |
+
if getattr(self.config, "llm_cfg", None) is None:
|
281 |
+
self.config.llm_cfg = self.llm.config
|
282 |
+
if getattr(self.config, "vision_tower_cfg", None) is None:
|
283 |
+
self.config.vision_tower_cfg = self.vision_tower.config
|
284 |
+
if getattr(self.config, "mm_projector_cfg", None) is None:
|
285 |
+
self.config.mm_projector_cfg = self.mm_projector.config
|
286 |
+
|
287 |
+
def get_llm(self):
|
288 |
+
llm = getattr(self, "llm", None)
|
289 |
+
if type(llm) is list:
|
290 |
+
llm = llm[0]
|
291 |
+
return llm
|
292 |
+
|
293 |
+
def get_lm_head(self):
|
294 |
+
lm_head = getattr(self.get_llm(), "lm_head", None)
|
295 |
+
return lm_head
|
296 |
+
|
297 |
+
def get_vision_tower(self):
|
298 |
+
vision_tower = getattr(self, "vision_tower", None)
|
299 |
+
if type(vision_tower) is list:
|
300 |
+
vision_tower = vision_tower[0]
|
301 |
+
return vision_tower
|
302 |
+
|
303 |
+
def get_mm_projector(self):
|
304 |
+
mm_projector = getattr(self, "mm_projector", None)
|
305 |
+
if type(mm_projector) is list:
|
306 |
+
mm_projector = mm_projector[0]
|
307 |
+
return mm_projector
|
308 |
+
|
309 |
+
def freezed_module_patch(self):
|
310 |
+
"""
|
311 |
+
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
|
312 |
+
"""
|
313 |
+
if self.training:
|
314 |
+
if self.get_llm() and not getattr(self.config, "tune_language_model", False):
|
315 |
+
pass
|
316 |
+
# logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
|
317 |
+
if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
|
318 |
+
self.get_vision_tower().eval()
|
319 |
+
if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
|
320 |
+
self.get_mm_projector().eval()
|
321 |
+
|
322 |
+
class VILAForCasualLM(VILAPretrainedModel):
|
323 |
+
def __init__(self, config: VILAConfig, *args, **kwargs):
|
324 |
+
super().__init__(config, *args, **kwargs)
|
325 |
+
|
326 |
+
def merge_features_for_dynamic_s2(self, image_features, block_sizes):
|
327 |
+
scales = self.get_vision_tower().scales
|
328 |
+
resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx
|
329 |
+
|
330 |
+
image_features_each_image = []
|
331 |
+
new_block_sizes = []
|
332 |
+
block_cnt = 0
|
333 |
+
for block_size_each_image in block_sizes:
|
334 |
+
if block_size_each_image is None:
|
335 |
+
cur_features = image_features[block_cnt : block_cnt + 1]
|
336 |
+
cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5))
|
337 |
+
cur_features = cur_features.repeat(1, len(scales), 1, 1)
|
338 |
+
image_features_each_image.append(cur_features)
|
339 |
+
new_block_sizes.append((1, 1))
|
340 |
+
block_cnt += 1
|
341 |
+
else:
|
342 |
+
cur_features_each_scale = []
|
343 |
+
for scale in scales[:-1]:
|
344 |
+
num_blocks_this_scale = (scale // scales[0]) ** 2
|
345 |
+
cur_features_each_scale.append(
|
346 |
+
self.merge_chessboard(
|
347 |
+
image_features[block_cnt : block_cnt + num_blocks_this_scale],
|
348 |
+
num_split_h=scale // scales[0],
|
349 |
+
num_split_w=scale // scales[0],
|
350 |
+
)
|
351 |
+
) # 1 * C * H * W
|
352 |
+
block_cnt += num_blocks_this_scale
|
353 |
+
num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
|
354 |
+
cur_features_each_scale.append(
|
355 |
+
self.merge_chessboard(
|
356 |
+
image_features[block_cnt : block_cnt + num_blocks_last_scale],
|
357 |
+
num_split_h=block_size_each_image[0],
|
358 |
+
num_split_w=block_size_each_image[1],
|
359 |
+
)
|
360 |
+
) # 1 * C * H * W
|
361 |
+
block_cnt += num_blocks_last_scale
|
362 |
+
|
363 |
+
# resize and concat features from different scales
|
364 |
+
output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
|
365 |
+
cur_features = torch.cat(
|
366 |
+
[
|
367 |
+
F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
|
368 |
+
cur_features_each_scale[i].dtype
|
369 |
+
)
|
370 |
+
for i in range(len(cur_features_each_scale))
|
371 |
+
],
|
372 |
+
dim=1,
|
373 |
+
)
|
374 |
+
# cur_features = rearrange(cur_features, "1 c h w -> (h w) c")
|
375 |
+
|
376 |
+
image_features_each_image.append(cur_features)
|
377 |
+
|
378 |
+
if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
|
379 |
+
new_block_sizes.append(block_size_each_image)
|
380 |
+
else:
|
381 |
+
new_block_sizes.append(
|
382 |
+
(
|
383 |
+
scales[resize_output_to_scale_idx] // scales[0],
|
384 |
+
scales[resize_output_to_scale_idx] // scales[0],
|
385 |
+
)
|
386 |
+
)
|
387 |
+
|
388 |
+
assert block_cnt == len(image_features)
|
389 |
+
|
390 |
+
return image_features_each_image, new_block_sizes
|
391 |
+
|
392 |
+
def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None):
|
393 |
+
if block_sizes is None:
|
394 |
+
block_sizes = [None] * len(images)
|
395 |
+
if getattr(self.config, "dynamic_s2", False):
|
396 |
+
image_features = self.get_vision_tower()(images)
|
397 |
+
image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)
|
398 |
+
|
399 |
+
image_features = [
|
400 |
+
self.split_chessboard(x, block_size[0], block_size[1])
|
401 |
+
for x, block_size in zip(image_features, new_block_sizes)
|
402 |
+
] # list of B * C * H * W tensors
|
403 |
+
image_features = torch.cat(
|
404 |
+
[rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
|
405 |
+
) # B * N * C
|
406 |
+
image_features = self.get_mm_projector()(image_features)
|
407 |
+
image_features = list(
|
408 |
+
image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
|
409 |
+
)
|
410 |
+
image_features = [
|
411 |
+
self.merge_chessboard(x, block_size[0], block_size[1])
|
412 |
+
for x, block_size in zip(image_features, new_block_sizes)
|
413 |
+
] # list of 1 * C * H * W tensors
|
414 |
+
image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] # list of N * C tensors
|
415 |
+
if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
|
416 |
+
image_features = torch.stack(image_features, dim=0)
|
417 |
+
else:
|
418 |
+
image_features = self.get_vision_tower()(images)
|
419 |
+
image_features = self.get_mm_projector()(image_features)
|
420 |
+
return image_features
|
421 |
+
|
422 |
+
def _embed(
|
423 |
+
self,
|
424 |
+
input_ids: torch.Tensor,
|
425 |
+
media: Dict[str, List[torch.Tensor]],
|
426 |
+
media_config: Dict[str, Dict[str, Any]],
|
427 |
+
labels: Optional[torch.Tensor],
|
428 |
+
attention_mask: Optional[torch.Tensor],
|
429 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
430 |
+
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
|
431 |
+
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
|
432 |
+
|
433 |
+
# PROCESS_GROUP_MANAGER = get_pg_manager()
|
434 |
+
PROCESS_GROUP_MANAGER = None
|
435 |
+
if PROCESS_GROUP_MANAGER is not None:
|
436 |
+
for name in media:
|
437 |
+
self.encoders[name].end_tokens = None
|
438 |
+
|
439 |
+
# Extract text and media embeddings
|
440 |
+
text_embeds = self.llm.model.embed_tokens(input_ids)
|
441 |
+
media_embeds = self.__embed_media_tokens(media, media_config)
|
442 |
+
|
443 |
+
# This is a workaround to make sure the dummy embeddings are consumed
|
444 |
+
while media_embeds.get("dummy"):
|
445 |
+
dummy_embed = media_embeds["dummy"].popleft()
|
446 |
+
text_embeds += torch.sum(dummy_embed) * 0
|
447 |
+
|
448 |
+
# Remove padding
|
449 |
+
batch_size = labels.shape[0]
|
450 |
+
text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)]
|
451 |
+
labels = [labels[k][attention_mask[k]] for k in range(batch_size)]
|
452 |
+
|
453 |
+
# Build inverse mapping from token ID to media name
|
454 |
+
media_tokens = {}
|
455 |
+
for name, token_id in self.tokenizer.media_token_ids.items():
|
456 |
+
media_tokens[token_id] = name
|
457 |
+
|
458 |
+
# Fuse text and media embeddings
|
459 |
+
inputs_m, labels_m = [], []
|
460 |
+
for k in range(batch_size):
|
461 |
+
inputs_mk, labels_mk = [], []
|
462 |
+
pos = 0
|
463 |
+
while pos < len(labels[k]):
|
464 |
+
if input_ids[k][pos].item() in media_tokens:
|
465 |
+
end = pos + 1
|
466 |
+
name = media_tokens[input_ids[k][pos].item()]
|
467 |
+
input = media_embeds[name].popleft()
|
468 |
+
label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
|
469 |
+
else:
|
470 |
+
end = pos
|
471 |
+
while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
|
472 |
+
end += 1
|
473 |
+
input = text_embeds[k][pos:end]
|
474 |
+
label = labels[k][pos:end]
|
475 |
+
inputs_mk.append(input)
|
476 |
+
labels_mk.append(label)
|
477 |
+
pos = end
|
478 |
+
inputs_m.append(torch.cat(inputs_mk, dim=0))
|
479 |
+
labels_m.append(torch.cat(labels_mk, dim=0))
|
480 |
+
inputs, labels = inputs_m, labels_m
|
481 |
+
|
482 |
+
# Check if all media embeddings are consumed
|
483 |
+
for name in media_embeds:
|
484 |
+
if media_embeds[name]:
|
485 |
+
raise ValueError(f"Not all {name} embeddings are consumed!")
|
486 |
+
|
487 |
+
# Truncate sequences to `model_max_length` as media embeddings are inserted
|
488 |
+
inputs, labels = self.__truncate_sequence(inputs, labels)
|
489 |
+
|
490 |
+
# Pad sequences to the longest one in the batch
|
491 |
+
return self.__batchify_sequence(inputs, labels)
|
492 |
+
|
493 |
+
def __embed_media_tokens(
|
494 |
+
self,
|
495 |
+
media: Dict[str, List[torch.Tensor]],
|
496 |
+
media_config: Dict[str, Dict[str, Any]],
|
497 |
+
) -> Dict[str, List[torch.Tensor]]:
|
498 |
+
embeds = defaultdict(deque)
|
499 |
+
for name in media:
|
500 |
+
if self.training:
|
501 |
+
# Gather metainfo of media objects from all ranks
|
502 |
+
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
|
503 |
+
infos = list(chain(*distributed.all_gather(info)))
|
504 |
+
|
505 |
+
# The entire batch does not contain any media objects of this type.
|
506 |
+
if not infos:
|
507 |
+
continue
|
508 |
+
|
509 |
+
# Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
|
510 |
+
if media.get(name) is None or len(media[name]) == 0:
|
511 |
+
dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
|
512 |
+
embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
|
513 |
+
continue
|
514 |
+
embeds[name] = deque(self.encoders[name](media[name], media_config[name]))
|
515 |
+
return embeds
|
516 |
+
|
517 |
+
def __truncate_sequence(
|
518 |
+
self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
|
519 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
520 |
+
if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
|
521 |
+
warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
|
522 |
+
inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
|
523 |
+
labels = [label[: self.tokenizer.model_max_length] for label in labels]
|
524 |
+
return inputs, labels
|
525 |
+
|
526 |
+
def __batchify_sequence(
|
527 |
+
self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
|
528 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
529 |
+
batch_size = len(inputs)
|
530 |
+
device = inputs[0].device
|
531 |
+
hidden_size = inputs[0].shape[1]
|
532 |
+
max_length = max(inputs[k].shape[0] for k in range(batch_size))
|
533 |
+
attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)
|
534 |
+
|
535 |
+
inputs_p, labels_p = [], []
|
536 |
+
for k in range(batch_size):
|
537 |
+
size_pk = max_length - inputs[k].shape[0]
|
538 |
+
inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
|
539 |
+
labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
|
540 |
+
if self.tokenizer.padding_side == "right":
|
541 |
+
attention_mask[k, inputs[k].shape[0] :] = False
|
542 |
+
inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
|
543 |
+
labels_pk = torch.cat([labels[k], labels_pk], dim=0)
|
544 |
+
else:
|
545 |
+
attention_mask[k, : -inputs[k].shape[0]] = False
|
546 |
+
inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
|
547 |
+
labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
|
548 |
+
inputs_p.append(inputs_pk)
|
549 |
+
labels_p.append(labels_pk)
|
550 |
+
|
551 |
+
inputs = torch.stack(inputs_p, dim=0)
|
552 |
+
labels = torch.stack(labels_p, dim=0)
|
553 |
+
return inputs, labels, attention_mask
|
554 |
+
|
555 |
+
def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
|
556 |
+
# Handle sequence parallelism
|
557 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
558 |
+
|
559 |
+
# We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
|
560 |
+
if PROCESS_GROUP_MANAGER is not None:
|
561 |
+
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
|
562 |
+
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
|
563 |
+
sp_group = PROCESS_GROUP_MANAGER.sp_pg
|
564 |
+
ring_degree = PROCESS_GROUP_MANAGER.ring_degree
|
565 |
+
ring_rank = PROCESS_GROUP_MANAGER.ring_rank
|
566 |
+
ring_type = PROCESS_GROUP_MANAGER.ring_type
|
567 |
+
ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
|
568 |
+
ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank
|
569 |
+
|
570 |
+
bs, shard_seqlen = position_ids.shape
|
571 |
+
sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
|
572 |
+
dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
|
573 |
+
sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)
|
574 |
+
|
575 |
+
if sp_rank == 0:
|
576 |
+
original_start_id = 0
|
577 |
+
else:
|
578 |
+
original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
|
579 |
+
original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()
|
580 |
+
|
581 |
+
# Gather attention_mask, position_ids, labels and input_embeds
|
582 |
+
all_inputs_embeds = torch.zeros(
|
583 |
+
bs,
|
584 |
+
torch.sum(sp_seq_len_cat),
|
585 |
+
inputs_embeds.shape[-1],
|
586 |
+
dtype=inputs_embeds.dtype,
|
587 |
+
device=inputs_embeds.device,
|
588 |
+
).contiguous()
|
589 |
+
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
|
590 |
+
dist.barrier(group=sp_group)
|
591 |
+
dist.all_reduce(all_inputs_embeds, group=sp_group)
|
592 |
+
dist.barrier(group=sp_group)
|
593 |
+
|
594 |
+
attention_mask_list = [
|
595 |
+
torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
|
596 |
+
for i in range(sp_degree)
|
597 |
+
]
|
598 |
+
position_ids_list = [
|
599 |
+
torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
|
600 |
+
for i in range(sp_degree)
|
601 |
+
]
|
602 |
+
labels_list = [
|
603 |
+
torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
|
604 |
+
]
|
605 |
+
|
606 |
+
dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
|
607 |
+
dist.all_gather(position_ids_list, position_ids, group=sp_group)
|
608 |
+
dist.all_gather(labels_list, labels, group=sp_group)
|
609 |
+
|
610 |
+
effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
|
611 |
+
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
|
612 |
+
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
|
613 |
+
|
614 |
+
global_attention_mask_list = []
|
615 |
+
global_position_ids_list = []
|
616 |
+
global_labels_list = []
|
617 |
+
global_inputs_embeds_list = []
|
618 |
+
for i in range(bs):
|
619 |
+
global_attention_mask_batch_list = []
|
620 |
+
global_position_ids_batch_list = []
|
621 |
+
global_labels_batch_list = []
|
622 |
+
global_inputs_embeds_batch_list = []
|
623 |
+
for j in range(sp_degree):
|
624 |
+
eff_len = effective_seqlen_batch_list[i][j]
|
625 |
+
prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0
|
626 |
+
|
627 |
+
global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
|
628 |
+
global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
|
629 |
+
global_labels_batch_list.append(labels_list[j][i, :eff_len])
|
630 |
+
global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
|
631 |
+
global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
|
632 |
+
global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
|
633 |
+
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
|
634 |
+
global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
|
635 |
+
|
636 |
+
global_attention_mask = torch.nn.utils.rnn.pad_sequence(
|
637 |
+
global_attention_mask_list, batch_first=True, padding_value=False
|
638 |
+
)
|
639 |
+
global_position_ids = torch.nn.utils.rnn.pad_sequence(
|
640 |
+
global_position_ids_list, batch_first=True, padding_value=-1
|
641 |
+
)
|
642 |
+
global_labels = torch.nn.utils.rnn.pad_sequence(
|
643 |
+
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
|
644 |
+
)
|
645 |
+
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
|
646 |
+
global_inputs_embeds_list, batch_first=True, padding_value=0
|
647 |
+
)
|
648 |
+
|
649 |
+
# Re-shard the inputs
|
650 |
+
if ring_degree > 1:
|
651 |
+
total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
|
652 |
+
new_seqlen_per_rank = total_effective_seqlen // sp_degree
|
653 |
+
assert torch.all(
|
654 |
+
total_effective_seqlen % sp_degree == 0
|
655 |
+
), "total_effective_seqlen must be divisible by sp_degree"
|
656 |
+
|
657 |
+
max_new_seqlen = torch.max(new_seqlen_per_rank).item()
|
658 |
+
|
659 |
+
new_attention_mask = torch.zeros(
|
660 |
+
(bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
|
661 |
+
)
|
662 |
+
new_position_ids = torch.zeros(
|
663 |
+
(bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
|
664 |
+
)
|
665 |
+
new_labels = torch.full(
|
666 |
+
(bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
|
667 |
+
)
|
668 |
+
new_inputs_embeds = torch.zeros(
|
669 |
+
(bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
|
670 |
+
dtype=global_inputs_embeds.dtype,
|
671 |
+
device=global_inputs_embeds.device,
|
672 |
+
)
|
673 |
+
|
674 |
+
if ring_type == "ring_varlen":
|
675 |
+
for i in range(bs):
|
676 |
+
start_idx = new_seqlen_per_rank[i] * sp_rank
|
677 |
+
end_idx = start_idx + new_seqlen_per_rank[i]
|
678 |
+
new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
|
679 |
+
new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
|
680 |
+
new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
|
681 |
+
new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
|
682 |
+
i, start_idx:end_idx, :
|
683 |
+
]
|
684 |
+
elif ring_type == "zigzag_ring_varlen":
|
685 |
+
chunk_size = total_effective_seqlen // (2 * sp_degree)
|
686 |
+
for i in range(bs):
|
687 |
+
# Zigzag pattern indices
|
688 |
+
if sp_degree == ring_degree:
|
689 |
+
forward_rank_idx = sp_rank
|
690 |
+
backward_rank_idx = 2 * sp_degree - sp_rank - 1
|
691 |
+
else:
|
692 |
+
ulysses_offset = ulysses_rank * ring_degree * 2
|
693 |
+
forward_rank_idx = ring_rank + ulysses_offset
|
694 |
+
backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset
|
695 |
+
|
696 |
+
# Calculate start and end indices for the forward and backward zigzag
|
697 |
+
start_idx_fwd = forward_rank_idx * chunk_size[i]
|
698 |
+
end_idx_fwd = start_idx_fwd + chunk_size[i]
|
699 |
+
|
700 |
+
start_idx_bwd = backward_rank_idx * chunk_size[i]
|
701 |
+
end_idx_bwd = start_idx_bwd + chunk_size[i]
|
702 |
+
|
703 |
+
# Fill new tensors with zigzag data
|
704 |
+
new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
|
705 |
+
new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
|
706 |
+
i, start_idx_bwd:end_idx_bwd
|
707 |
+
]
|
708 |
+
|
709 |
+
new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
|
710 |
+
new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
|
711 |
+
i, start_idx_bwd:end_idx_bwd
|
712 |
+
]
|
713 |
+
|
714 |
+
new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
|
715 |
+
new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]
|
716 |
+
|
717 |
+
new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
|
718 |
+
new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
|
719 |
+
i, start_idx_bwd:end_idx_bwd, :
|
720 |
+
]
|
721 |
+
else:
|
722 |
+
raise ValueError(f"Invalid ring_type: {ring_type}")
|
723 |
+
else:
|
724 |
+
global_seq_len = global_attention_mask.shape[-1]
|
725 |
+
seq_len_sharded = global_seq_len // sp_degree
|
726 |
+
start_idx_reshard = seq_len_sharded * sp_rank
|
727 |
+
end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len
|
728 |
+
|
729 |
+
new_attention_mask = torch.narrow(
|
730 |
+
global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
|
731 |
+
)
|
732 |
+
new_position_ids = torch.narrow(
|
733 |
+
global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
|
734 |
+
)
|
735 |
+
new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
|
736 |
+
new_inputs_embeds = torch.narrow(
|
737 |
+
global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
|
738 |
+
)
|
739 |
+
|
740 |
+
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
|
741 |
+
|
742 |
+
device = inputs_embeds.device
|
743 |
+
batch_size = inputs_embeds.shape[0]
|
744 |
+
seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]
|
745 |
+
|
746 |
+
# Pack all sequences together
|
747 |
+
inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
|
748 |
+
attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
|
749 |
+
position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
|
750 |
+
labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]
|
751 |
+
|
752 |
+
# Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
|
753 |
+
inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
|
754 |
+
attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
|
755 |
+
position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
|
756 |
+
labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))
|
757 |
+
|
758 |
+
# Mask the first token of each sequence to avoid contamination
|
759 |
+
for label in labels_p:
|
760 |
+
label[0] = IGNORE_INDEX
|
761 |
+
|
762 |
+
# Batch the data
|
763 |
+
inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
|
764 |
+
attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
|
765 |
+
position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
|
766 |
+
labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)
|
767 |
+
|
768 |
+
if hasattr(
|
769 |
+
self, "pad_to_multiple_of"
|
770 |
+
): # related to quantization, please refer to ModelArguments for more information.
|
771 |
+
assert len(labels_p.shape) == 2
|
772 |
+
batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
|
773 |
+
hidden_size = inputs_embeds_p.shape[-1]
|
774 |
+
|
775 |
+
if max_length % self.pad_to_multiple_of != 0:
|
776 |
+
max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
|
777 |
+
difference = max_length - cur_length
|
778 |
+
|
779 |
+
inputs_embeds_p = torch.cat(
|
780 |
+
(
|
781 |
+
inputs_embeds_p,
|
782 |
+
torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
|
783 |
+
),
|
784 |
+
dim=1,
|
785 |
+
)
|
786 |
+
labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
|
787 |
+
attention_mask_p = torch.cat(
|
788 |
+
(
|
789 |
+
attention_mask_p,
|
790 |
+
torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
|
791 |
+
),
|
792 |
+
dim=1,
|
793 |
+
)
|
794 |
+
position_ids_p = torch.cat(
|
795 |
+
(position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
|
796 |
+
)
|
797 |
+
|
798 |
+
return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p
|
799 |
+
|
800 |
+
def get_xgr_logits_processor(self, response_format) -> List[LogitsProcessor]:
|
801 |
+
raise NotImplementedError("This method is not implemented for VILA model.")
|
802 |
+
# Convert response format to logits processor
|
803 |
+
import xgrammar as xgr
|
804 |
+
|
805 |
+
logging.info("[XGrammar] Compiling grammar for contrained output")
|
806 |
+
|
807 |
+
if self.grammar_compiler is None:
|
808 |
+
# logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}")
|
809 |
+
self.grammar_compiler = xgr.GrammarCompiler(
|
810 |
+
xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size)
|
811 |
+
)
|
812 |
+
|
813 |
+
if response_format.type == "json_schema":
|
814 |
+
compiled_grammar = self.grammar_compiler.compile_json_schema(
|
815 |
+
response_format.json_schema.schema_,
|
816 |
+
indent=2,
|
817 |
+
)
|
818 |
+
else:
|
819 |
+
compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar()
|
820 |
+
|
821 |
+
return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)]
|
822 |
+
|
823 |
+
def forward(
|
824 |
+
self,
|
825 |
+
input_ids: torch.LongTensor = None,
|
826 |
+
media: Optional[Dict[str, List[torch.Tensor]]] = None,
|
827 |
+
images: Optional[torch.FloatTensor] = None,
|
828 |
+
media_config: Optional[List] = None,
|
829 |
+
attention_mask: Optional[torch.Tensor] = None,
|
830 |
+
position_ids: Optional[torch.LongTensor] = None,
|
831 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
832 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
833 |
+
labels: Optional[torch.LongTensor] = None,
|
834 |
+
packing: bool = True,
|
835 |
+
force_packing: bool = False,
|
836 |
+
seqlens_in_batch: Optional[torch.LongTensor] = None,
|
837 |
+
dpo_forward: bool = False,
|
838 |
+
**kwargs,
|
839 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
840 |
+
self.freezed_module_patch()
|
841 |
+
|
842 |
+
if images is not None:
|
843 |
+
if media is not None:
|
844 |
+
raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
|
845 |
+
print("The 'images' argument is deprecated. Please use 'media' instead.")
|
846 |
+
media = {"image": images}
|
847 |
+
|
848 |
+
if media_config is None:
|
849 |
+
media_config = defaultdict(dict)
|
850 |
+
|
851 |
+
if inputs_embeds is None:
|
852 |
+
inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask)
|
853 |
+
|
854 |
+
if force_packing or (packing and self.training and not dpo_forward):
|
855 |
+
if seqlens_in_batch is None:
|
856 |
+
seqlens_in_batch = torch.sum(attention_mask, dim=1)
|
857 |
+
set_seqlens_in_batch(seqlens_in_batch)
|
858 |
+
|
859 |
+
(inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
|
860 |
+
inputs_embeds, attention_mask, position_ids, labels
|
861 |
+
)
|
862 |
+
|
863 |
+
outputs = self.llm(
|
864 |
+
inputs_embeds=inputs_embeds,
|
865 |
+
attention_mask=attention_mask,
|
866 |
+
position_ids=position_ids,
|
867 |
+
past_key_values=past_key_values,
|
868 |
+
labels=labels,
|
869 |
+
**kwargs,
|
870 |
+
)
|
871 |
+
|
872 |
+
if self.training and getattr(self.config, "time_token_ids", []):
|
873 |
+
outputs.loss = soft_cross_entropy(
|
874 |
+
outputs.logits,
|
875 |
+
labels,
|
876 |
+
soft_tokens=self.config.time_token_ids,
|
877 |
+
std=self.config.soft_ce_std,
|
878 |
+
)
|
879 |
+
|
880 |
+
if dpo_forward:
|
881 |
+
return outputs.logits, labels
|
882 |
+
|
883 |
+
return outputs
|
884 |
+
@torch.inference_mode()
|
885 |
+
def generate(
|
886 |
+
self,
|
887 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
888 |
+
media: Optional[Dict[str, List[torch.Tensor]]] = None,
|
889 |
+
media_config: Dict[str, Dict[str, Any]] = None,
|
890 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
891 |
+
**generation_kwargs,
|
892 |
+
):
|
893 |
+
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
|
894 |
+
return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)
|
895 |
+
|
896 |
+
@torch.inference_mode()
|
897 |
+
def generate_content(
|
898 |
+
self,
|
899 |
+
prompt: Union[str, List],
|
900 |
+
generation_config: Optional[GenerationConfig] = None,
|
901 |
+
response_format = None,
|
902 |
+
) -> str:
|
903 |
+
# TODO(zhijianl): Support directly taking conversation as input
|
904 |
+
conversation = [{"from": "human", "value": prompt}]
|
905 |
+
|
906 |
+
# Convert response format to logits processor
|
907 |
+
if response_format:
|
908 |
+
xgr_logits_processor = self.get_xgr_logits_processor(response_format)
|
909 |
+
else:
|
910 |
+
xgr_logits_processor = None
|
911 |
+
|
912 |
+
# Extract media from the conversation
|
913 |
+
|
914 |
+
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
|
915 |
+
media = extract_media(conversation, self.config)
|
916 |
+
|
917 |
+
# Process media
|
918 |
+
media_config = defaultdict(dict)
|
919 |
+
for name in media:
|
920 |
+
if name == "image":
|
921 |
+
if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
|
922 |
+
self.config.image_processor = self.vision_tower.image_processor
|
923 |
+
if self.config.image_aspect_ratio == "dynamic":
|
924 |
+
images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
|
925 |
+
conversation[0]["value"] = conversation[0]["value"].replace(
|
926 |
+
DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
|
927 |
+
)
|
928 |
+
else:
|
929 |
+
if type(self.config.s2_scales) is str:
|
930 |
+
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
|
931 |
+
images, block_sizes = process_image(
|
932 |
+
media["image"][0], self.config, None, enable_dynamic_s2=True
|
933 |
+
)
|
934 |
+
images = images.half()
|
935 |
+
media_config[name]["block_sizes"] = [block_sizes]
|
936 |
+
else:
|
937 |
+
images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
|
938 |
+
media[name] = [image for image in images]
|
939 |
+
elif name == "video":
|
940 |
+
if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1:
|
941 |
+
media[name] = [
|
942 |
+
process_images(
|
943 |
+
images,
|
944 |
+
self.vision_tower.image_processor,
|
945 |
+
self.config,
|
946 |
+
enable_dynamic_res=True,
|
947 |
+
max_tiles=self.config.video_max_tiles,
|
948 |
+
).half()
|
949 |
+
for images in media[name]
|
950 |
+
]
|
951 |
+
elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1:
|
952 |
+
self.config.image_processor = self.vision_tower.image_processor
|
953 |
+
if type(self.config.s2_scales) is str:
|
954 |
+
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
|
955 |
+
media[name] = [
|
956 |
+
torch.cat(
|
957 |
+
[
|
958 |
+
process_image(
|
959 |
+
image,
|
960 |
+
self.config,
|
961 |
+
None,
|
962 |
+
enable_dynamic_s2=True,
|
963 |
+
max_tiles=self.config.video_max_tiles,
|
964 |
+
)[0].half()
|
965 |
+
for image in images
|
966 |
+
]
|
967 |
+
)
|
968 |
+
for images in media[name]
|
969 |
+
]
|
970 |
+
else:
|
971 |
+
media[name] = [
|
972 |
+
process_images(images, self.vision_tower.image_processor, self.config).half()
|
973 |
+
for images in media[name]
|
974 |
+
]
|
975 |
+
else:
|
976 |
+
raise ValueError(f"Unsupported media type: {name}")
|
977 |
+
|
978 |
+
# Tokenize the conversation
|
979 |
+
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
|
980 |
+
|
981 |
+
# Set up the generation config
|
982 |
+
generation_config = generation_config or self.default_generation_config
|
983 |
+
|
984 |
+
# Generate the response
|
985 |
+
try:
|
986 |
+
output_ids = self.generate(
|
987 |
+
input_ids=input_ids,
|
988 |
+
media=media,
|
989 |
+
media_config=media_config,
|
990 |
+
generation_config=generation_config,
|
991 |
+
logits_processor=xgr_logits_processor, # structured generation
|
992 |
+
)
|
993 |
+
except ValueError:
|
994 |
+
if not generation_config.do_sample:
|
995 |
+
raise
|
996 |
+
# FIXME(zhijianl): This is a temporary workaround for the sampling issue
|
997 |
+
logging.warning("Generation failed with sampling, retrying with greedy decoding.")
|
998 |
+
generation_config.do_sample = False
|
999 |
+
output_ids = self.generate(
|
1000 |
+
input_ids=input_ids,
|
1001 |
+
media=media,
|
1002 |
+
media_config=media_config,
|
1003 |
+
generation_config=generation_config,
|
1004 |
+
logits_processor=xgr_logits_processor,
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
# Decode the response
|
1008 |
+
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
1009 |
+
return response
|
1010 |
+
|
1011 |
+
@property
|
1012 |
+
def default_generation_config(self) -> GenerationConfig:
|
1013 |
+
generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
|
1014 |
+
if self.tokenizer.eos_token_id is None:
|
1015 |
+
raise ValueError("Tokenizer must have an EOS token")
|
1016 |
+
if generation_config.max_length == GenerationConfig().max_length:
|
1017 |
+
generation_config.max_length = self.tokenizer.model_max_length
|
1018 |
+
if generation_config.pad_token_id is None:
|
1019 |
+
generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
|
1020 |
+
if generation_config.bos_token_id is None:
|
1021 |
+
generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
1022 |
+
if generation_config.eos_token_id is None:
|
1023 |
+
generation_config.eos_token_id = self.tokenizer.eos_token_id
|
1024 |
+
return generation_config
|
siglip_encoder.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from accelerate.hooks import add_hook_to_module
|
21 |
+
from einops import rearrange
|
22 |
+
from s2wrapper import forward as multiscale_forward
|
23 |
+
from transformers import AutoConfig, PreTrainedModel
|
24 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
25 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
26 |
+
from transformers.models.siglip import SiglipVisionModel
|
27 |
+
from transformers import PretrainedConfig, SiglipImageProcessor
|
28 |
+
|
29 |
+
class VisionTower(nn.Module):
|
30 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.is_loaded = False
|
34 |
+
|
35 |
+
self.vision_tower_name = vision_tower
|
36 |
+
self.select_layer = getattr(args, "mm_vision_select_layer", -2)
|
37 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
38 |
+
|
39 |
+
self.cfg_only = None
|
40 |
+
|
41 |
+
def feature_select(self, image_forward_outs):
|
42 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
43 |
+
if self.select_feature == "patch":
|
44 |
+
image_features = image_features[:, 1:]
|
45 |
+
elif self.select_feature == "cls_patch":
|
46 |
+
image_features = image_features
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
49 |
+
return image_features
|
50 |
+
|
51 |
+
def _maybe_resize_pos_embeds(
|
52 |
+
self,
|
53 |
+
model: PreTrainedModel,
|
54 |
+
image_processor: BaseImageProcessor,
|
55 |
+
resolution: int = -1,
|
56 |
+
interpolate_mode: str = "linear",
|
57 |
+
):
|
58 |
+
if resolution in [model.config.image_size, -1]:
|
59 |
+
return
|
60 |
+
print(
|
61 |
+
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
|
62 |
+
)
|
63 |
+
embeddings = model.vision_model.embeddings
|
64 |
+
patch_size = embeddings.patch_size
|
65 |
+
num_new_tokens = int((resolution // patch_size) ** 2)
|
66 |
+
|
67 |
+
old_embeddings = embeddings.position_embedding
|
68 |
+
match interpolate_mode:
|
69 |
+
case "linear":
|
70 |
+
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
|
71 |
+
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
|
72 |
+
import torch
|
73 |
+
import torch.nn as nn
|
74 |
+
|
75 |
+
if is_deepspeed_zero3_enabled():
|
76 |
+
import deepspeed
|
77 |
+
|
78 |
+
with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None):
|
79 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
80 |
+
else:
|
81 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
82 |
+
new_embeddings = nn.Embedding(
|
83 |
+
num_new_tokens,
|
84 |
+
old_embedding_dim,
|
85 |
+
dtype=old_embeddings.weight.dtype,
|
86 |
+
device=old_embeddings.weight.device,
|
87 |
+
)
|
88 |
+
mapped_indices = (
|
89 |
+
torch.arange(num_new_tokens).to(old_embeddings.weight.device)
|
90 |
+
/ (num_new_tokens - 1)
|
91 |
+
* (old_num_tokens - 1)
|
92 |
+
)
|
93 |
+
floor_indices = torch.clamp(mapped_indices.floor().long(), min=0, max=old_num_tokens - 1)
|
94 |
+
ceil_indices = torch.clamp(mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1)
|
95 |
+
if is_deepspeed_zero3_enabled():
|
96 |
+
params = [old_embeddings.weight, new_embeddings.weight]
|
97 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
98 |
+
interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
|
99 |
+
ceil_indices, :
|
100 |
+
] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
|
101 |
+
else:
|
102 |
+
interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
|
103 |
+
ceil_indices, :
|
104 |
+
] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
|
105 |
+
new_embeddings.weight.data = interpolated_embeds
|
106 |
+
case _:
|
107 |
+
raise NotImplementedError
|
108 |
+
|
109 |
+
if hasattr(old_embeddings, "_hf_hook"):
|
110 |
+
hook = old_embeddings._hf_hook
|
111 |
+
add_hook_to_module(new_embeddings, hook)
|
112 |
+
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
|
113 |
+
## update vision encoder's configurations
|
114 |
+
model.config.image_size = resolution
|
115 |
+
if hasattr(image_processor, "crop_size"):
|
116 |
+
# CLIP vision tower
|
117 |
+
image_processor.crop_size = resolution
|
118 |
+
else:
|
119 |
+
# SIGLIP vision tower
|
120 |
+
assert hasattr(image_processor, "size")
|
121 |
+
image_processor.size = {"height": resolution, "width": resolution}
|
122 |
+
## TODO define a '_reinitialize' method for VisionTower
|
123 |
+
embeddings.position_embedding = new_embeddings
|
124 |
+
embeddings.image_size = resolution
|
125 |
+
embeddings.num_patches = embeddings.num_positions = num_new_tokens
|
126 |
+
embeddings.position_ids = (
|
127 |
+
torch.arange(embeddings.num_positions).expand((1, -1)).to(old_embeddings.weight.device)
|
128 |
+
)
|
129 |
+
|
130 |
+
def forward(self, images):
|
131 |
+
if type(images) is list:
|
132 |
+
image_features = []
|
133 |
+
for image in images:
|
134 |
+
image_forward_out = self.vision_tower(
|
135 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
136 |
+
output_hidden_states=True,
|
137 |
+
)
|
138 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
139 |
+
image_features.append(image_feature)
|
140 |
+
else:
|
141 |
+
image_forward_outs = self.vision_tower(
|
142 |
+
images.to(device=self.device, dtype=self.dtype),
|
143 |
+
output_hidden_states=True,
|
144 |
+
)
|
145 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
146 |
+
|
147 |
+
return image_features
|
148 |
+
|
149 |
+
|
150 |
+
@property
|
151 |
+
def dummy_feature(self):
|
152 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
153 |
+
|
154 |
+
@property
|
155 |
+
def dtype(self):
|
156 |
+
return self.vision_tower.dtype
|
157 |
+
|
158 |
+
@property
|
159 |
+
def device(self):
|
160 |
+
return self.vision_tower.device
|
161 |
+
|
162 |
+
@property
|
163 |
+
def config(self):
|
164 |
+
if self.is_loaded:
|
165 |
+
return self.vision_tower.config
|
166 |
+
else:
|
167 |
+
return self.cfg_only
|
168 |
+
|
169 |
+
@property
|
170 |
+
def hidden_size(self):
|
171 |
+
return self.config.hidden_size
|
172 |
+
|
173 |
+
@property
|
174 |
+
def num_patches(self):
|
175 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
176 |
+
|
177 |
+
|
178 |
+
class VisionTowerS2(VisionTower):
|
179 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
180 |
+
super().__init__(vision_tower, args, delay_load)
|
181 |
+
|
182 |
+
self.scales = list(map(int, args.s2_scales.split(",")))
|
183 |
+
self.scales.sort()
|
184 |
+
self.max_split_size = args.s2_max_split_size
|
185 |
+
self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
|
186 |
+
|
187 |
+
def forward_feature(self, images):
|
188 |
+
image_forward_outs = self.vision_tower(
|
189 |
+
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
|
190 |
+
)
|
191 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
192 |
+
return image_features
|
193 |
+
|
194 |
+
def forward(self, images):
|
195 |
+
if type(images) is list:
|
196 |
+
image_feature = []
|
197 |
+
for image in images:
|
198 |
+
image_feature = multiscale_forward(
|
199 |
+
self.forward_feature,
|
200 |
+
image.unsqueeze(0),
|
201 |
+
img_sizes=self.scales,
|
202 |
+
max_split_size=self.max_split_size,
|
203 |
+
resize_output_to_idx=self.resize_output_to_scale_idx,
|
204 |
+
)
|
205 |
+
image_features.append(image_feature)
|
206 |
+
else:
|
207 |
+
image_features = multiscale_forward(
|
208 |
+
self.forward_feature,
|
209 |
+
images,
|
210 |
+
img_sizes=self.scales,
|
211 |
+
max_split_size=self.max_split_size,
|
212 |
+
resize_output_to_idx=self.resize_output_to_scale_idx,
|
213 |
+
)
|
214 |
+
|
215 |
+
return image_features
|
216 |
+
|
217 |
+
@property
|
218 |
+
def hidden_size(self):
|
219 |
+
return self.config.hidden_size * len(self.scales)
|
220 |
+
|
221 |
+
|
222 |
+
class VisionTowerDynamicS2(VisionTower):
|
223 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
224 |
+
super().__init__(vision_tower, args, delay_load)
|
225 |
+
|
226 |
+
self.scales = list(map(int, args.s2_scales.split(",")))
|
227 |
+
self.scales.sort()
|
228 |
+
self.max_split_size = args.s2_max_split_size
|
229 |
+
self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
|
230 |
+
|
231 |
+
def forward_feature(self, images):
|
232 |
+
image_forward_outs = self.vision_tower(
|
233 |
+
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
|
234 |
+
)
|
235 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
236 |
+
return image_features
|
237 |
+
|
238 |
+
def forward(self, images):
|
239 |
+
assert type(images) is not list
|
240 |
+
image_features = self.forward_feature(images)
|
241 |
+
|
242 |
+
return image_features
|
243 |
+
|
244 |
+
@property
|
245 |
+
def hidden_size(self):
|
246 |
+
return self.config.hidden_size * len(self.scales)
|
247 |
+
|
248 |
+
|
249 |
+
class SiglipVisionTower(VisionTower):
|
250 |
+
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
|
251 |
+
super().__init__(model_name_or_path, config)
|
252 |
+
# TODO(ligengl): why pass config here leading to errors?
|
253 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(
|
254 |
+
model_name_or_path,
|
255 |
+
attn_implementation=config._attn_implementation,
|
256 |
+
torch_dtype=eval(config.model_dtype),
|
257 |
+
)
|
258 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
|
259 |
+
self.is_loaded = True
|
260 |
+
|
261 |
+
|
262 |
+
class SiglipVisionTowerS2(VisionTowerS2):
|
263 |
+
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
|
264 |
+
super().__init__(model_name_or_path, config)
|
265 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(
|
266 |
+
model_name_or_path,
|
267 |
+
attn_implementation=config._attn_implementation,
|
268 |
+
torch_dtype=eval(config.model_dtype),
|
269 |
+
)
|
270 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
|
271 |
+
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
|
272 |
+
self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1]
|
273 |
+
self.is_loaded = True
|
274 |
+
|
275 |
+
|
276 |
+
class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2):
|
277 |
+
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
|
278 |
+
super().__init__(model_name_or_path, config)
|
279 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(
|
280 |
+
model_name_or_path,
|
281 |
+
attn_implementation="flash_attention_2",
|
282 |
+
torch_dtype=eval(config.model_dtype),
|
283 |
+
)
|
284 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
|
285 |
+
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
|
286 |
+
self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0]
|
287 |
+
self.is_loaded = True
|
tokenizer_utils.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
from typing import Any, Dict, List, Optional, Sequence
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import transformers
|
21 |
+
|
22 |
+
from .conversation import default_conversation, SeparatorStyle
|
23 |
+
from .mm_utils import tokenizer_image_token
|
24 |
+
from .constants import IGNORE_INDEX, SENTINEL_TOKEN
|
25 |
+
|
26 |
+
# __all__ = [
|
27 |
+
# "tokenize_conversation",
|
28 |
+
# "preprocess_conversation",
|
29 |
+
# "infer_stop_tokens",
|
30 |
+
# ]
|
31 |
+
|
32 |
+
DUMMY_CONVERSATION = [
|
33 |
+
{"from": "human", "value": "question"},
|
34 |
+
{"from": "gpt", "value": "answer"},
|
35 |
+
] * 10
|
36 |
+
|
37 |
+
|
38 |
+
def tokenize_conversation_legacy(
|
39 |
+
messages: Sequence[Dict[str, str]],
|
40 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
41 |
+
add_generation_prompt: bool = False,
|
42 |
+
overrides: Optional[Dict[str, str]] = None,
|
43 |
+
no_system_prompt: bool = False,
|
44 |
+
) -> torch.Tensor:
|
45 |
+
conv = default_conversation.copy()
|
46 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
47 |
+
|
48 |
+
if no_system_prompt:
|
49 |
+
conv.system = ""
|
50 |
+
|
51 |
+
# Skip the first message if it is not from human
|
52 |
+
if messages[0]["from"] != "human":
|
53 |
+
messages = messages[1:]
|
54 |
+
|
55 |
+
# Add a generation prompt if needed
|
56 |
+
if add_generation_prompt:
|
57 |
+
messages.append({"from": "gpt", "value": None})
|
58 |
+
|
59 |
+
conv.messages = []
|
60 |
+
for turn, message in enumerate(messages):
|
61 |
+
role = roles[message["from"]]
|
62 |
+
assert role == conv.roles[turn % 2]
|
63 |
+
if overrides is not None and message["from"] in overrides:
|
64 |
+
conv.append_message(role, overrides[message["from"]])
|
65 |
+
else:
|
66 |
+
conv.append_message(role, message["value"])
|
67 |
+
|
68 |
+
return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")
|
69 |
+
|
70 |
+
|
71 |
+
def tokenize_conversation(
|
72 |
+
messages: Sequence[Dict[str, str]],
|
73 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
74 |
+
add_generation_prompt: bool = False,
|
75 |
+
overrides: Optional[Dict[str, str]] = None,
|
76 |
+
no_system_prompt: bool = False,
|
77 |
+
) -> torch.Tensor:
|
78 |
+
# Normalize the conversation before tokenization
|
79 |
+
for message in messages:
|
80 |
+
message["value"] = message["value"].strip()
|
81 |
+
|
82 |
+
if default_conversation.sep_style != SeparatorStyle.AUTO:
|
83 |
+
return tokenize_conversation_legacy(
|
84 |
+
messages,
|
85 |
+
tokenizer,
|
86 |
+
add_generation_prompt=add_generation_prompt,
|
87 |
+
overrides=overrides,
|
88 |
+
no_system_prompt=no_system_prompt,
|
89 |
+
)
|
90 |
+
|
91 |
+
conversation = []
|
92 |
+
for m in messages:
|
93 |
+
message = {}
|
94 |
+
if m["from"] == "human":
|
95 |
+
message["role"] = "user"
|
96 |
+
elif m["from"] == "gpt":
|
97 |
+
message["role"] = "assistant"
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")
|
100 |
+
|
101 |
+
message["content"] = m["value"]
|
102 |
+
if overrides is not None and m["from"] in overrides:
|
103 |
+
message["content"] = overrides[m["from"]]
|
104 |
+
conversation.append(message)
|
105 |
+
|
106 |
+
if no_system_prompt:
|
107 |
+
conversation = [{"role": "system", "content": ""}] + conversation
|
108 |
+
|
109 |
+
text = tokenizer.apply_chat_template(
|
110 |
+
conversation,
|
111 |
+
add_generation_prompt=add_generation_prompt,
|
112 |
+
tokenize=False,
|
113 |
+
)
|
114 |
+
return tokenizer_image_token(text, tokenizer, return_tensors="pt")
|
115 |
+
|
116 |
+
|
117 |
+
def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
|
118 |
+
if not hasattr(tokenizer, "sentinel_token"):
|
119 |
+
tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
|
120 |
+
tokenizer.sentinel_token = SENTINEL_TOKEN
|
121 |
+
tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)
|
122 |
+
|
123 |
+
|
124 |
+
def preprocess_conversation(
|
125 |
+
conversation: Sequence[Dict[str, str]],
|
126 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
127 |
+
no_system_prompt: bool = False,
|
128 |
+
retried: bool = False,
|
129 |
+
) -> Dict[str, Any]:
|
130 |
+
inputs = tokenize_conversation(conversation, tokenizer, no_system_prompt=no_system_prompt)
|
131 |
+
labels = torch.ones_like(inputs) * IGNORE_INDEX
|
132 |
+
|
133 |
+
# Generate the template by replacing the assistant's response with a sentinel.
|
134 |
+
_maybe_add_sentinel_token(tokenizer)
|
135 |
+
template = tokenize_conversation(
|
136 |
+
conversation, tokenizer, overrides={"gpt": SENTINEL_TOKEN}, no_system_prompt=no_system_prompt
|
137 |
+
)
|
138 |
+
|
139 |
+
# Remove sentinel tokens from the template.
|
140 |
+
mask = torch.ones_like(template, dtype=torch.bool)
|
141 |
+
for k in range(template.size(0) - 1):
|
142 |
+
if template[k] == tokenizer.sentinel_token_id:
|
143 |
+
mask[k : k + 2] = False
|
144 |
+
# NOTE(zhijianl): This is to handle the corner case where there is an empty token before the sentinel token.
|
145 |
+
if k > 0 and retried:
|
146 |
+
mask[k - 1] = False
|
147 |
+
template = template[mask]
|
148 |
+
|
149 |
+
# Match the tokenized conversation with the template (with no assistant's response).
|
150 |
+
# Every token that is not matched will be included in the label for training.
|
151 |
+
p = 0
|
152 |
+
for k in range(inputs.size(0)):
|
153 |
+
if p < template.size(0) and inputs[k] == template[p]:
|
154 |
+
p += 1
|
155 |
+
else:
|
156 |
+
labels[k] = inputs[k]
|
157 |
+
|
158 |
+
# Mask all tokens in the label if the template is not fully matched.
|
159 |
+
if p < template.size(0):
|
160 |
+
if not retried:
|
161 |
+
return preprocess_conversation(
|
162 |
+
conversation,
|
163 |
+
tokenizer,
|
164 |
+
no_system_prompt=no_system_prompt,
|
165 |
+
retried=True,
|
166 |
+
)
|
167 |
+
print(f"Failed to process the conversation: '{conversation}'. All tokens will be masked in the label.")
|
168 |
+
labels[:] = IGNORE_INDEX
|
169 |
+
|
170 |
+
return {"input_ids": inputs, "labels": labels}
|
171 |
+
|
172 |
+
|
173 |
+
def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
|
174 |
+
_maybe_add_sentinel_token(tokenizer)
|
175 |
+
template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})
|
176 |
+
|
177 |
+
stop_tokens = {tokenizer.eos_token}
|
178 |
+
for k in range(template.size(0) - 1):
|
179 |
+
if template[k] == tokenizer.sentinel_token_id:
|
180 |
+
stop_token = tokenizer.decode(template[k + 1])
|
181 |
+
stop_tokens.add(stop_token)
|
182 |
+
return list(stop_tokens)
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
17 |
+
import os
|
18 |
+
import os.path as osp
|
19 |
+
|
20 |
+
from huggingface_hub import repo_exists, snapshot_download
|
21 |
+
from huggingface_hub.utils import HFValidationError, validate_repo_id
|
22 |
+
from transformers import AutoConfig, PretrainedConfig
|
23 |
+
|
24 |
+
|
25 |
+
def get_model_config(config):
|
26 |
+
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
|
27 |
+
|
28 |
+
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
|
29 |
+
root_path = config._name_or_path
|
30 |
+
else:
|
31 |
+
root_path = config.resume_path
|
32 |
+
|
33 |
+
# download from huggingface
|
34 |
+
if root_path is not None and not osp.exists(root_path):
|
35 |
+
try:
|
36 |
+
valid_hf_repo = repo_exists(root_path)
|
37 |
+
except HFValidationError as e:
|
38 |
+
valid_hf_repo = False
|
39 |
+
if valid_hf_repo:
|
40 |
+
root_path = snapshot_download(root_path)
|
41 |
+
|
42 |
+
return_list = []
|
43 |
+
for key in default_keys:
|
44 |
+
cfg = getattr(config, key, None)
|
45 |
+
if isinstance(cfg, dict):
|
46 |
+
try:
|
47 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
48 |
+
except:
|
49 |
+
raise ValueError(f"Cannot find resume path in config for {key}!")
|
50 |
+
elif isinstance(cfg, PretrainedConfig):
|
51 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
52 |
+
elif isinstance(cfg, str):
|
53 |
+
return_list.append(cfg)
|
54 |
+
|
55 |
+
return return_list
|
56 |
+
|
57 |
+
|
58 |
+
def get_model_config_fp8(config):
|
59 |
+
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
|
60 |
+
|
61 |
+
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
|
62 |
+
root_path = config._name_or_path
|
63 |
+
else:
|
64 |
+
root_path = config.resume_path
|
65 |
+
|
66 |
+
# download from huggingface
|
67 |
+
if root_path is not None and not osp.exists(root_path):
|
68 |
+
try:
|
69 |
+
valid_hf_repo = repo_exists(root_path)
|
70 |
+
except HFValidationError as e:
|
71 |
+
valid_hf_repo = False
|
72 |
+
if valid_hf_repo:
|
73 |
+
root_path = snapshot_download(root_path)
|
74 |
+
|
75 |
+
return_list = []
|
76 |
+
for key in default_keys:
|
77 |
+
cfg = getattr(config, key, None)
|
78 |
+
if isinstance(cfg, dict):
|
79 |
+
try:
|
80 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
81 |
+
except:
|
82 |
+
raise ValueError(f"Cannot find resume path in config for {key}!")
|
83 |
+
elif isinstance(cfg, PretrainedConfig):
|
84 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
85 |
+
elif isinstance(cfg, str):
|
86 |
+
return_list.append(cfg)
|
87 |
+
|
88 |
+
# fp8_llm
|
89 |
+
key = "fp8_llm_cfg"
|
90 |
+
directory_path = os.path.join(root_path, key[:-4])
|
91 |
+
assert os.path.isdir(directory_path) and os.listdir(
|
92 |
+
directory_path
|
93 |
+
), "You need to first convert the model weights to FP8 explicitly."
|
94 |
+
return_list.append(directory_path)
|
95 |
+
|
96 |
+
return return_list
|
97 |
+
|
98 |
+
|
99 |
+
def get_model_config_fp8(config):
|
100 |
+
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
|
101 |
+
|
102 |
+
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
|
103 |
+
root_path = config._name_or_path
|
104 |
+
else:
|
105 |
+
root_path = config.resume_path
|
106 |
+
|
107 |
+
# download from huggingface
|
108 |
+
if root_path is not None and not osp.exists(root_path):
|
109 |
+
try:
|
110 |
+
valid_hf_repo = repo_exists(root_path)
|
111 |
+
except HFValidationError as e:
|
112 |
+
valid_hf_repo = False
|
113 |
+
if valid_hf_repo:
|
114 |
+
root_path = snapshot_download(root_path)
|
115 |
+
|
116 |
+
return_list = []
|
117 |
+
for key in default_keys:
|
118 |
+
cfg = getattr(config, key, None)
|
119 |
+
if isinstance(cfg, dict):
|
120 |
+
try:
|
121 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
122 |
+
except:
|
123 |
+
raise ValueError(f"Cannot find resume path in config for {key}!")
|
124 |
+
elif isinstance(cfg, PretrainedConfig):
|
125 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
126 |
+
elif isinstance(cfg, str):
|
127 |
+
return_list.append(cfg)
|
128 |
+
|
129 |
+
# fp8_llm
|
130 |
+
key = "fp8_llm_cfg"
|
131 |
+
directory_path = os.path.join(root_path, key[:-4])
|
132 |
+
assert os.path.isdir(directory_path) and os.listdir(
|
133 |
+
directory_path
|
134 |
+
), "You need to first convert the model weights to FP8 explicitly."
|
135 |
+
return_list.append(directory_path)
|
136 |
+
|
137 |
+
return return_list
|
138 |
+
|
139 |
+
|
140 |
+
def is_mm_model(model_path):
|
141 |
+
"""
|
142 |
+
Check if the model at the given path is a visual language model.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
model_path (str): The path to the model.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
bool: True if the model is an MM model, False otherwise.
|
149 |
+
"""
|
150 |
+
config = AutoConfig.from_pretrained(model_path)
|
151 |
+
architectures = config.architectures
|
152 |
+
for architecture in architectures:
|
153 |
+
if "llava" in architecture.lower():
|
154 |
+
return True
|
155 |
+
return False
|
156 |
+
|
157 |
+
|
158 |
+
def auto_upgrade(config):
|
159 |
+
cfg = AutoConfig.from_pretrained(config)
|
160 |
+
if "llava" in config and "llava" not in cfg.model_type:
|
161 |
+
assert cfg.model_type == "llama"
|
162 |
+
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
|
163 |
+
print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
|
164 |
+
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
165 |
+
if confirm.lower() in ["y", "yes"]:
|
166 |
+
print("Upgrading checkpoint...")
|
167 |
+
assert len(cfg.architectures) == 1
|
168 |
+
setattr(cfg.__class__, "model_type", "llava")
|
169 |
+
cfg.architectures[0] = "LlavaLlamaForCausalLM"
|
170 |
+
cfg.save_pretrained(config)
|
171 |
+
print("Checkpoint upgraded.")
|
172 |
+
else:
|
173 |
+
print("Checkpoint upgrade aborted.")
|
174 |
+
exit(1)
|
vision_tower/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runs/train/qwen25_2B_3x3-sft-20241118122815/model/vision_tower",
|
3 |
+
"architectures": [
|
4 |
+
"SiglipVisionModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"hidden_act": "gelu_pytorch_tanh",
|
8 |
+
"hidden_size": 1152,
|
9 |
+
"image_size": 448,
|
10 |
+
"intermediate_size": 4304,
|
11 |
+
"layer_norm_eps": 1e-06,
|
12 |
+
"model_type": "siglip_vision_model",
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_channels": 3,
|
15 |
+
"num_hidden_layers": 27,
|
16 |
+
"num_image_tokens": 256,
|
17 |
+
"patch_size": 14,
|
18 |
+
"projection_dim": 2048,
|
19 |
+
"projector_hidden_act": "gelu_fast",
|
20 |
+
"torch_dtype": "bfloat16",
|
21 |
+
"transformers_version": "4.46.0",
|
22 |
+
"vision_use_head": false
|
23 |
+
}
|
vision_tower/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38c39a77befc808483de3c3a5d20f02af1e3111e15a3e9909f64b2ea7b553fd9
|
3 |
+
size 826707904
|
vision_tower/preprocessor_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "SiglipImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"processor_class": "SiglipProcessor",
|
18 |
+
"resample": 3,
|
19 |
+
"rescale_factor": 0.00392156862745098,
|
20 |
+
"size": {
|
21 |
+
"height": 448,
|
22 |
+
"width": 448
|
23 |
+
}
|
24 |
+
}
|