File size: 2,259 Bytes
7930d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: UrukHan/t5-russian-summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-russian-summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/kornilova_eka/huggingface/runs/qlwnr551)
# t5-russian-summarization

This model is a fine-tuned version of [UrukHan/t5-russian-summarization](https://huggingface.co/UrukHan/t5-russian-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6100
- Rouge1: 14.6206
- Rouge2: 3.6976
- Rougel: 14.7351
- Rougelsum: 14.6463
- Gen Len: 15.3711

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 1.63          | 0.1769 | 5000  | 1.6100          | 14.6206 | 3.6976 | 14.7351 | 14.6463   | 15.3711 |
| 1.6458        | 0.3538 | 10000 | 1.6100          | 14.6206 | 3.6976 | 14.7351 | 14.6463   | 15.3711 |
| 1.6401        | 0.5306 | 15000 | 1.6100          | 14.6206 | 3.6976 | 14.7351 | 14.6463   | 15.3711 |
| 1.6504        | 0.7075 | 20000 | 1.6100          | 14.6206 | 3.6976 | 14.7351 | 14.6463   | 15.3711 |
| 1.6104        | 0.8844 | 25000 | 1.6100          | 14.6206 | 3.6976 | 14.7351 | 14.6463   | 15.3711 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.0.1
- Datasets 2.20.0
- Tokenizers 0.19.1