File size: 3,118 Bytes
56b3f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

library_name: peft
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: bustling-mule-472
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bustling-mule-472

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5763
- Hamming Loss: 0.2622
- Zero One Loss: 0.9788
- Jaccard Score: 0.8576
- Hamming Loss Optimised: 0.1125
- Hamming Loss Threshold: 0.7916
- Zero One Loss Optimised: 0.9313
- Zero One Loss Threshold: 0.6047
- Jaccard Score Optimised: 0.8674
- Jaccard Score Threshold: 0.4160

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.0326562164596325e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8120994730940104,0.9704977891667916) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 100  | 0.6296          | 0.3405       | 0.9988        | 0.8635        | 0.1124                 | 0.8315                 | 0.9263                  | 0.6502                  | 0.8573                  | 0.5325                  |
| No log        | 2.0   | 200  | 0.6005          | 0.294        | 0.9862        | 0.8557        | 0.1123                 | 0.8430                 | 0.9437                  | 0.5930                  | 0.8542                  | 0.5052                  |
| No log        | 3.0   | 300  | 0.5825          | 0.2704       | 0.98          | 0.8577        | 0.1124                 | 0.8053                 | 0.9300                  | 0.5977                  | 0.8538                  | 0.4886                  |
| No log        | 4.0   | 400  | 0.5763          | 0.2622       | 0.9788        | 0.8576        | 0.1125                 | 0.7916                 | 0.9313                  | 0.6047                  | 0.8674                  | 0.4160                  |


### Framework versions

- PEFT 0.13.2
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0