ElementBrawler commited on
Commit
649cd2f
·
1 Parent(s): 3f3de7f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.72 +/- 25.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac29cb1670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac29cb1700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac29cb1790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac29cb1820>", "_build": "<function ActorCriticPolicy._build at 0x7fac29cb18b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fac29cb1940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac29cb19d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac29cb1a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac29cb1af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac29cb1b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac29cb1c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac29cb1ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fac29cb0e80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680043916197386246, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaWxrz2HHe63SvbOosNjTWuBqy6WkIAugAAgD8AAIA/ADsLPa5BhLpYHpA6nK59NcxJZrkb7qe5AACAPwAAgD9NVoa9w6kcungH1Lou80e2wraRO27P+DkAAAAAAACAPxq0hz0e/aM/rr8gP5p3Jr8wmnK7AvDJPQAAAAAAAAAAAAH9PFLg27nYtpm6K7QntbWRrbofQ7g5AACAPwAAgD8A35E9KTEaPlJgH77GKWq+MfIpveD6XDwAAAAAAAAAALOAQj2Pjmm6970DucOxmLWLemw61ugKNQAAgD8AAIA/7aIcPgoGIj+AI+K9XSuZvrB4aT01yJK8AAAAAAAAAABm3vw8KXhrukpR+LYd53+yv6FKO16ODzYAAIA/AACAP5rra7zsobS5ahdXOlB1wDVg5yU7jnJ3uQAAgD8AAIA/AHSwu9f8cruleMI7YLU0PDHJljxDOR+9AACAPwAAgD8zk4K7hRuNuVEpDDq5miG22kOBuxjWJbkAAIA/AACAPxozxD0scJs+1B+tvLvAkb7IchY91GaXuQAAAAAAAAAAzfRtvcO5bLryFlg7uRyBOOXTRTrGcZC5AACAPwAAgD8ajjy9j84OusPFezpXayY1sD0XOt7MlbkAAIA/AACAPwB1hrzXGFS7F02XuzOGfDxXVHc8ZnlavQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID2H8NO4GZECUhpRSlIwBbJRN6AOMAXSUR0CSmjXMQmNSdX2UKGgGaAloD0MI46dxb/4rZkCUhpRSlGgVTegDaBZHQJKawcghbGF1fZQoaAZoCWgPQwiYhuEjYqVkQJSGlFKUaBVN6ANoFkdAkqID4pMHr3V9lChoBmgJaA9DCBoyHqUSz2dAlIaUUpRoFU3oA2gWR0CSpGuZkTYedX2UKGgGaAloD0MI8KZbdoiLZECUhpRSlGgVTegDaBZHQJKlVoi9qUN1fZQoaAZoCWgPQwiwko/dBchDQJSGlFKUaBVNAAFoFkdAkqhev6j323V9lChoBmgJaA9DCGK/J9apo2RAlIaUUpRoFU3oA2gWR0CSrId1uBMBdX2UKGgGaAloD0MIiJ6USY0/aECUhpRSlGgVTegDaBZHQJLEKFPBSDR1fZQoaAZoCWgPQwh8DcFxmWJjQJSGlFKUaBVN6ANoFkdAksWi8OCoTHV9lChoBmgJaA9DCEX2QZYFoGVAlIaUUpRoFU3oA2gWR0CSx4RxLkCFdX2UKGgGaAloD0MIRX9o5snXUUCUhpRSlGgVS91oFkdAksg1uejEenV9lChoBmgJaA9DCKMdN/zuEWNAlIaUUpRoFU3oA2gWR0CSySHnlnyvdX2UKGgGaAloD0MImkF8YMdfX0CUhpRSlGgVTegDaBZHQJLKZGd7OVx1fZQoaAZoCWgPQwgQPL69619mQJSGlFKUaBVN6ANoFkdAks13C4z7/HV9lChoBmgJaA9DCFVpi2t81kpAlIaUUpRoFUvxaBZHQJLQAyAQQMB1fZQoaAZoCWgPQwgmcsEZfFZgQJSGlFKUaBVN6ANoFkdAkuAoV/MGHHV9lChoBmgJaA9DCGspIO1/y2JAlIaUUpRoFU3oA2gWR0CS5pkjX4CZdX2UKGgGaAloD0MIGjOJekGgZECUhpRSlGgVTegDaBZHQJLtLzI3irF1fZQoaAZoCWgPQwhqZ5jaUvpiQJSGlFKUaBVN6ANoFkdAkvB1u3trsXV9lChoBmgJaA9DCFhwP+AB5mNAlIaUUpRoFU3oA2gWR0CS8QQ3gk1NdX2UKGgGaAloD0MIdLfrpSnLUECUhpRSlGgVS9xoFkdAkvUpAt4A0nV9lChoBmgJaA9DCMMMjSeC32ZAlIaUUpRoFU3oA2gWR0CS9yyR0U48dX2UKGgGaAloD0MIpvJ2hNMiYkCUhpRSlGgVTegDaBZHQJL4szXSSeR1fZQoaAZoCWgPQwgPm8jMBVljQJSGlFKUaBVN6ANoFkdAkvs6jesPrnV9lChoBmgJaA9DCM+CUN5HG2NAlIaUUpRoFU3oA2gWR0CS/bfsNUfgdX2UKGgGaAloD0MIGw5LAz9YUkCUhpRSlGgVS8ZoFkdAkv7J3Tuv2XV9lChoBmgJaA9DCL3/jxOmHWZAlIaUUpRoFU3oA2gWR0CTG0gYP5HmdX2UKGgGaAloD0MI2AxwQTZGaECUhpRSlGgVTegDaBZHQJMeBbFCLMt1fZQoaAZoCWgPQwg7Oq5GdqBjQJSGlFKUaBVN6ANoFkdAkx8d/J/5L3V9lChoBmgJaA9DCNnts8pMk2JAlIaUUpRoFU3oA2gWR0CTIH7q6e5GdX2UKGgGaAloD0MIajF4mPYoZUCUhpRSlGgVTegDaBZHQJMiQHMUypJ1fZQoaAZoCWgPQwgj+UogJTxTQJSGlFKUaBVLt2gWR0CTJJw0fozOdX2UKGgGaAloD0MIQ8ajVMIvY0CUhpRSlGgVTegDaBZHQJMmvPQfIS11fZQoaAZoCWgPQwgi+rX101dfQJSGlFKUaBVN6ANoFkdAkyqMiW3Sa3V9lChoBmgJaA9DCExsPq4Nc2FAlIaUUpRoFU3oA2gWR0CTOMxdIGyHdX2UKGgGaAloD0MIRQ2mYXiNZ0CUhpRSlGgVTegDaBZHQJNCoMpgCwN1fZQoaAZoCWgPQwjDoEyjyVJjQJSGlFKUaBVN6ANoFkdAk0YjGYKIBXV9lChoBmgJaA9DCEeSIFwBdGdAlIaUUpRoFU3oA2gWR0CTRrvV3EAHdX2UKGgGaAloD0MIkZkLXB5AYECUhpRSlGgVTegDaBZHQJNNZzmwJPZ1fZQoaAZoCWgPQwhyUwPNZ+VkQJSGlFKUaBVN6ANoFkdAk08TsY2sJnV9lChoBmgJaA9DCO1Ky0g9DmJAlIaUUpRoFU3oA2gWR0CTUc8an753dX2UKGgGaAloD0MIngq453l1ZUCUhpRSlGgVTegDaBZHQJNVQj0L+gl1fZQoaAZoCWgPQwi1F9F2TGtgQJSGlFKUaBVN6ANoFkdAk3DxQ3xWk3V9lChoBmgJaA9DCJxqLcxCg2VAlIaUUpRoFU3oA2gWR0CTcsMRYigTdX2UKGgGaAloD0MIQiECDiFJYUCUhpRSlGgVTegDaBZHQJNzcvi97F91fZQoaAZoCWgPQwhEw2LUtW5iQJSGlFKUaBVN6ANoFkdAk3RKLCN0eXV9lChoBmgJaA9DCOuNWmF6ymVAlIaUUpRoFU3oA2gWR0CTdX9d/rjYdX2UKGgGaAloD0MIhjqscEt+Y0CUhpRSlGgVTegDaBZHQJN3IRRMvh91fZQoaAZoCWgPQwh5knTN5INiQJSGlFKUaBVN6ANoFkdAk3iUcn3L3nV9lChoBmgJaA9DCMjtl0/WjmJAlIaUUpRoFU3oA2gWR0CTewx8UmD2dX2UKGgGaAloD0MI9+Rhodb0P0CUhpRSlGgVS+VoFkdAk3vMTzundnV9lChoBmgJaA9DCFDgnXx6SEpAlIaUUpRoFUvmaBZHQJN+8uWa+ex1fZQoaAZoCWgPQwheSfJcX0BhQJSGlFKUaBVN6ANoFkdAk4c4HLRrrXV9lChoBmgJaA9DCC7kEdxI02JAlIaUUpRoFU3oA2gWR0CTkUyGSIP9dX2UKGgGaAloD0MI+69z02bNYUCUhpRSlGgVTegDaBZHQJOWH17IDHR1fZQoaAZoCWgPQwjTM73EWLFjQJSGlFKUaBVN6ANoFkdAk5cCMo+fRXV9lChoBmgJaA9DCG78icoGcWdAlIaUUpRoFU3oA2gWR0CToEgieNDMdX2UKGgGaAloD0MIp3aGqa3XY0CUhpRSlGgVTegDaBZHQJOh/SLIgeR1fZQoaAZoCWgPQwhuFFlrKB5kQJSGlFKUaBVN6ANoFkdAk6TSMo+fRXV9lChoBmgJaA9DCOLJbmb0dmVAlIaUUpRoFU3oA2gWR0CTp1oHs1KodX2UKGgGaAloD0MIOGivPp58aECUhpRSlGgVTegDaBZHQJPAoK4QSSN1fZQoaAZoCWgPQwgipdk8DqBiQJSGlFKUaBVN6ANoFkdAk8FZo0ygw3V9lChoBmgJaA9DCDenkgGgV2hAlIaUUpRoFU3oA2gWR0CTw5sDnvDxdX2UKGgGaAloD0MI9DehEAE2Y0CUhpRSlGgVTegDaBZHQJPF4M5OrQx1fZQoaAZoCWgPQwgpQup29rlfQJSGlFKUaBVN6ANoFkdAk8gclgMMJHV9lChoBmgJaA9DCERpb/AF9GNAlIaUUpRoFU3oA2gWR0CTzSgQpWmxdX2UKGgGaAloD0MI+oBAZ9KGYkCUhpRSlGgVTegDaBZHQJPOT1oQFs51fZQoaAZoCWgPQwieYP917vxgQJSGlFKUaBVN6ANoFkdAk9REqpcX33V9lChoBmgJaA9DCOF5qdiYhmFAlIaUUpRoFU3oA2gWR0CT4iz5XU6QdX2UKGgGaAloD0MIck2BzM7GNECUhpRSlGgVS/loFkdAk+K4Kc/dI3V9lChoBmgJaA9DCGQHlbiO7lFAlIaUUpRoFU0AAWgWR0CT6YhQm/nGdX2UKGgGaAloD0MIj1AzpIqDZECUhpRSlGgVTegDaBZHQJPsrhS9/SZ1fZQoaAZoCWgPQwjR56OMuBtnQJSGlFKUaBVN6ANoFkdAk/AG5c1O03V9lChoBmgJaA9DCE0UIXU7TWZAlIaUUpRoFU3oA2gWR0CT8J8MuvlmdX2UKGgGaAloD0MICcVW0DSKYUCUhpRSlGgVTegDaBZHQJP4ATPBzmx1fZQoaAZoCWgPQwgz4Zf6+YpmQJSGlFKUaBVN6ANoFkdAk/nzNMXaanV9lChoBmgJaA9DCGghAaPLQ2NAlIaUUpRoFU3oA2gWR0CT/U1WsA/+dX2UKGgGaAloD0MIsMivH2LfYUCUhpRSlGgVTegDaBZHQJQAq75Ec811fZQoaAZoCWgPQwjNkgA1tYFgQJSGlFKUaBVN6ANoFkdAlCG02pAD73V9lChoBmgJaA9DCInUtItpBmZAlIaUUpRoFU3oA2gWR0CUIraAnUlSdX2UKGgGaAloD0MIGHyak5eGZECUhpRSlGgVTegDaBZHQJQlfNu+AVh1fZQoaAZoCWgPQwirzf+rjg5eQJSGlFKUaBVN6ANoFkdAlCekIkZ75XV9lChoBmgJaA9DCPD9DdqrVyxAlIaUUpRoFUvmaBZHQJQpCRlpXZJ1fZQoaAZoCWgPQwiES8ecZ4RfQJSGlFKUaBVN6ANoFkdAlClufNA1N3V9lChoBmgJaA9DCK/t7Zbkh2FAlIaUUpRoFU3oA2gWR0CULQdPtUn5dX2UKGgGaAloD0MIYyr9hDNJYUCUhpRSlGgVTegDaBZHQJQ6amHgxah1fZQoaAZoCWgPQwg+527Xy31mQJSGlFKUaBVN6ANoFkdAlDrIa1kUbnV9lChoBmgJaA9DCMIWu31WxTdAlIaUUpRoFUv+aBZHQJQ7+Wldkax1fZQoaAZoCWgPQwhFnbmHBF1lQJSGlFKUaBVN6ANoFkdAlEBf029+PXV9lChoBmgJaA9DCPLPDOIDgHJAlIaUUpRoFU3XAWgWR0CUQPUzsQd0dX2UKGgGaAloD0MIP3Jr0u2HZUCUhpRSlGgVTegDaBZHQJRDK3Td+G51fZQoaAZoCWgPQwg0LEZd61hlQJSGlFKUaBVN6ANoFkdAlEYPiT+vQnV9lChoBmgJaA9DCJFkVu/wemJAlIaUUpRoFU3oA2gWR0CURpO1fE4vdX2UKGgGaAloD0MI/KiG/Z7kS0CUhpRSlGgVS+9oFkdAlEi02gnMMnV9lChoBmgJaA9DCJ+tg4M98WZAlIaUUpRoFU3oA2gWR0CUTrklNUOvdX2UKGgGaAloD0MIgV1NnrJcYUCUhpRSlGgVTegDaBZHQJRQ7/0dzXB1fZQoaAZoCWgPQwhOnUfF/1dDQJSGlFKUaBVL+GgWR0CUU4PhybQUdX2UKGgGaAloD0MIb/QxHxADZUCUhpRSlGgVTegDaBZHQJRVFNlAeJZ1fZQoaAZoCWgPQwj27SQi/H84QJSGlFKUaBVL92gWR0CUXRnWrfcfdX2UKGgGaAloD0MIUvAUcqXCYUCUhpRSlGgVTegDaBZHQJRkPviLl3h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4bee58b3a830c2258a612a7162e0d6bb1d263b39e9a55b933f95932a3dc35fc
3
+ size 147413
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac29cb1670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac29cb1700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac29cb1790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac29cb1820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fac29cb18b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fac29cb1940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac29cb19d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac29cb1a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fac29cb1af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac29cb1b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac29cb1c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac29cb1ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fac29cb0e80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680043916197386246,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaWxrz2HHe63SvbOosNjTWuBqy6WkIAugAAgD8AAIA/ADsLPa5BhLpYHpA6nK59NcxJZrkb7qe5AACAPwAAgD9NVoa9w6kcungH1Lou80e2wraRO27P+DkAAAAAAACAPxq0hz0e/aM/rr8gP5p3Jr8wmnK7AvDJPQAAAAAAAAAAAAH9PFLg27nYtpm6K7QntbWRrbofQ7g5AACAPwAAgD8A35E9KTEaPlJgH77GKWq+MfIpveD6XDwAAAAAAAAAALOAQj2Pjmm6970DucOxmLWLemw61ugKNQAAgD8AAIA/7aIcPgoGIj+AI+K9XSuZvrB4aT01yJK8AAAAAAAAAABm3vw8KXhrukpR+LYd53+yv6FKO16ODzYAAIA/AACAP5rra7zsobS5ahdXOlB1wDVg5yU7jnJ3uQAAgD8AAIA/AHSwu9f8cruleMI7YLU0PDHJljxDOR+9AACAPwAAgD8zk4K7hRuNuVEpDDq5miG22kOBuxjWJbkAAIA/AACAPxozxD0scJs+1B+tvLvAkb7IchY91GaXuQAAAAAAAAAAzfRtvcO5bLryFlg7uRyBOOXTRTrGcZC5AACAPwAAgD8ajjy9j84OusPFezpXayY1sD0XOt7MlbkAAIA/AACAPwB1hrzXGFS7F02XuzOGfDxXVHc8ZnlavQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID2H8NO4GZECUhpRSlIwBbJRN6AOMAXSUR0CSmjXMQmNSdX2UKGgGaAloD0MI46dxb/4rZkCUhpRSlGgVTegDaBZHQJKawcghbGF1fZQoaAZoCWgPQwiYhuEjYqVkQJSGlFKUaBVN6ANoFkdAkqID4pMHr3V9lChoBmgJaA9DCBoyHqUSz2dAlIaUUpRoFU3oA2gWR0CSpGuZkTYedX2UKGgGaAloD0MI8KZbdoiLZECUhpRSlGgVTegDaBZHQJKlVoi9qUN1fZQoaAZoCWgPQwiwko/dBchDQJSGlFKUaBVNAAFoFkdAkqhev6j323V9lChoBmgJaA9DCGK/J9apo2RAlIaUUpRoFU3oA2gWR0CSrId1uBMBdX2UKGgGaAloD0MIiJ6USY0/aECUhpRSlGgVTegDaBZHQJLEKFPBSDR1fZQoaAZoCWgPQwh8DcFxmWJjQJSGlFKUaBVN6ANoFkdAksWi8OCoTHV9lChoBmgJaA9DCEX2QZYFoGVAlIaUUpRoFU3oA2gWR0CSx4RxLkCFdX2UKGgGaAloD0MIRX9o5snXUUCUhpRSlGgVS91oFkdAksg1uejEenV9lChoBmgJaA9DCKMdN/zuEWNAlIaUUpRoFU3oA2gWR0CSySHnlnyvdX2UKGgGaAloD0MImkF8YMdfX0CUhpRSlGgVTegDaBZHQJLKZGd7OVx1fZQoaAZoCWgPQwgQPL69619mQJSGlFKUaBVN6ANoFkdAks13C4z7/HV9lChoBmgJaA9DCFVpi2t81kpAlIaUUpRoFUvxaBZHQJLQAyAQQMB1fZQoaAZoCWgPQwgmcsEZfFZgQJSGlFKUaBVN6ANoFkdAkuAoV/MGHHV9lChoBmgJaA9DCGspIO1/y2JAlIaUUpRoFU3oA2gWR0CS5pkjX4CZdX2UKGgGaAloD0MIGjOJekGgZECUhpRSlGgVTegDaBZHQJLtLzI3irF1fZQoaAZoCWgPQwhqZ5jaUvpiQJSGlFKUaBVN6ANoFkdAkvB1u3trsXV9lChoBmgJaA9DCFhwP+AB5mNAlIaUUpRoFU3oA2gWR0CS8QQ3gk1NdX2UKGgGaAloD0MIdLfrpSnLUECUhpRSlGgVS9xoFkdAkvUpAt4A0nV9lChoBmgJaA9DCMMMjSeC32ZAlIaUUpRoFU3oA2gWR0CS9yyR0U48dX2UKGgGaAloD0MIpvJ2hNMiYkCUhpRSlGgVTegDaBZHQJL4szXSSeR1fZQoaAZoCWgPQwgPm8jMBVljQJSGlFKUaBVN6ANoFkdAkvs6jesPrnV9lChoBmgJaA9DCM+CUN5HG2NAlIaUUpRoFU3oA2gWR0CS/bfsNUfgdX2UKGgGaAloD0MIGw5LAz9YUkCUhpRSlGgVS8ZoFkdAkv7J3Tuv2XV9lChoBmgJaA9DCL3/jxOmHWZAlIaUUpRoFU3oA2gWR0CTG0gYP5HmdX2UKGgGaAloD0MI2AxwQTZGaECUhpRSlGgVTegDaBZHQJMeBbFCLMt1fZQoaAZoCWgPQwg7Oq5GdqBjQJSGlFKUaBVN6ANoFkdAkx8d/J/5L3V9lChoBmgJaA9DCNnts8pMk2JAlIaUUpRoFU3oA2gWR0CTIH7q6e5GdX2UKGgGaAloD0MIajF4mPYoZUCUhpRSlGgVTegDaBZHQJMiQHMUypJ1fZQoaAZoCWgPQwgj+UogJTxTQJSGlFKUaBVLt2gWR0CTJJw0fozOdX2UKGgGaAloD0MIQ8ajVMIvY0CUhpRSlGgVTegDaBZHQJMmvPQfIS11fZQoaAZoCWgPQwgi+rX101dfQJSGlFKUaBVN6ANoFkdAkyqMiW3Sa3V9lChoBmgJaA9DCExsPq4Nc2FAlIaUUpRoFU3oA2gWR0CTOMxdIGyHdX2UKGgGaAloD0MIRQ2mYXiNZ0CUhpRSlGgVTegDaBZHQJNCoMpgCwN1fZQoaAZoCWgPQwjDoEyjyVJjQJSGlFKUaBVN6ANoFkdAk0YjGYKIBXV9lChoBmgJaA9DCEeSIFwBdGdAlIaUUpRoFU3oA2gWR0CTRrvV3EAHdX2UKGgGaAloD0MIkZkLXB5AYECUhpRSlGgVTegDaBZHQJNNZzmwJPZ1fZQoaAZoCWgPQwhyUwPNZ+VkQJSGlFKUaBVN6ANoFkdAk08TsY2sJnV9lChoBmgJaA9DCO1Ky0g9DmJAlIaUUpRoFU3oA2gWR0CTUc8an753dX2UKGgGaAloD0MIngq453l1ZUCUhpRSlGgVTegDaBZHQJNVQj0L+gl1fZQoaAZoCWgPQwi1F9F2TGtgQJSGlFKUaBVN6ANoFkdAk3DxQ3xWk3V9lChoBmgJaA9DCJxqLcxCg2VAlIaUUpRoFU3oA2gWR0CTcsMRYigTdX2UKGgGaAloD0MIQiECDiFJYUCUhpRSlGgVTegDaBZHQJNzcvi97F91fZQoaAZoCWgPQwhEw2LUtW5iQJSGlFKUaBVN6ANoFkdAk3RKLCN0eXV9lChoBmgJaA9DCOuNWmF6ymVAlIaUUpRoFU3oA2gWR0CTdX9d/rjYdX2UKGgGaAloD0MIhjqscEt+Y0CUhpRSlGgVTegDaBZHQJN3IRRMvh91fZQoaAZoCWgPQwh5knTN5INiQJSGlFKUaBVN6ANoFkdAk3iUcn3L3nV9lChoBmgJaA9DCMjtl0/WjmJAlIaUUpRoFU3oA2gWR0CTewx8UmD2dX2UKGgGaAloD0MI9+Rhodb0P0CUhpRSlGgVS+VoFkdAk3vMTzundnV9lChoBmgJaA9DCFDgnXx6SEpAlIaUUpRoFUvmaBZHQJN+8uWa+ex1fZQoaAZoCWgPQwheSfJcX0BhQJSGlFKUaBVN6ANoFkdAk4c4HLRrrXV9lChoBmgJaA9DCC7kEdxI02JAlIaUUpRoFU3oA2gWR0CTkUyGSIP9dX2UKGgGaAloD0MI+69z02bNYUCUhpRSlGgVTegDaBZHQJOWH17IDHR1fZQoaAZoCWgPQwjTM73EWLFjQJSGlFKUaBVN6ANoFkdAk5cCMo+fRXV9lChoBmgJaA9DCG78icoGcWdAlIaUUpRoFU3oA2gWR0CToEgieNDMdX2UKGgGaAloD0MIp3aGqa3XY0CUhpRSlGgVTegDaBZHQJOh/SLIgeR1fZQoaAZoCWgPQwhuFFlrKB5kQJSGlFKUaBVN6ANoFkdAk6TSMo+fRXV9lChoBmgJaA9DCOLJbmb0dmVAlIaUUpRoFU3oA2gWR0CTp1oHs1KodX2UKGgGaAloD0MIOGivPp58aECUhpRSlGgVTegDaBZHQJPAoK4QSSN1fZQoaAZoCWgPQwgipdk8DqBiQJSGlFKUaBVN6ANoFkdAk8FZo0ygw3V9lChoBmgJaA9DCDenkgGgV2hAlIaUUpRoFU3oA2gWR0CTw5sDnvDxdX2UKGgGaAloD0MI9DehEAE2Y0CUhpRSlGgVTegDaBZHQJPF4M5OrQx1fZQoaAZoCWgPQwgpQup29rlfQJSGlFKUaBVN6ANoFkdAk8gclgMMJHV9lChoBmgJaA9DCERpb/AF9GNAlIaUUpRoFU3oA2gWR0CTzSgQpWmxdX2UKGgGaAloD0MI+oBAZ9KGYkCUhpRSlGgVTegDaBZHQJPOT1oQFs51fZQoaAZoCWgPQwieYP917vxgQJSGlFKUaBVN6ANoFkdAk9REqpcX33V9lChoBmgJaA9DCOF5qdiYhmFAlIaUUpRoFU3oA2gWR0CT4iz5XU6QdX2UKGgGaAloD0MIck2BzM7GNECUhpRSlGgVS/loFkdAk+K4Kc/dI3V9lChoBmgJaA9DCGQHlbiO7lFAlIaUUpRoFU0AAWgWR0CT6YhQm/nGdX2UKGgGaAloD0MIj1AzpIqDZECUhpRSlGgVTegDaBZHQJPsrhS9/SZ1fZQoaAZoCWgPQwjR56OMuBtnQJSGlFKUaBVN6ANoFkdAk/AG5c1O03V9lChoBmgJaA9DCE0UIXU7TWZAlIaUUpRoFU3oA2gWR0CT8J8MuvlmdX2UKGgGaAloD0MICcVW0DSKYUCUhpRSlGgVTegDaBZHQJP4ATPBzmx1fZQoaAZoCWgPQwgz4Zf6+YpmQJSGlFKUaBVN6ANoFkdAk/nzNMXaanV9lChoBmgJaA9DCGghAaPLQ2NAlIaUUpRoFU3oA2gWR0CT/U1WsA/+dX2UKGgGaAloD0MIsMivH2LfYUCUhpRSlGgVTegDaBZHQJQAq75Ec811fZQoaAZoCWgPQwjNkgA1tYFgQJSGlFKUaBVN6ANoFkdAlCG02pAD73V9lChoBmgJaA9DCInUtItpBmZAlIaUUpRoFU3oA2gWR0CUIraAnUlSdX2UKGgGaAloD0MIGHyak5eGZECUhpRSlGgVTegDaBZHQJQlfNu+AVh1fZQoaAZoCWgPQwirzf+rjg5eQJSGlFKUaBVN6ANoFkdAlCekIkZ75XV9lChoBmgJaA9DCPD9DdqrVyxAlIaUUpRoFUvmaBZHQJQpCRlpXZJ1fZQoaAZoCWgPQwiES8ecZ4RfQJSGlFKUaBVN6ANoFkdAlClufNA1N3V9lChoBmgJaA9DCK/t7Zbkh2FAlIaUUpRoFU3oA2gWR0CULQdPtUn5dX2UKGgGaAloD0MIYyr9hDNJYUCUhpRSlGgVTegDaBZHQJQ6amHgxah1fZQoaAZoCWgPQwg+527Xy31mQJSGlFKUaBVN6ANoFkdAlDrIa1kUbnV9lChoBmgJaA9DCMIWu31WxTdAlIaUUpRoFUv+aBZHQJQ7+Wldkax1fZQoaAZoCWgPQwhFnbmHBF1lQJSGlFKUaBVN6ANoFkdAlEBf029+PXV9lChoBmgJaA9DCPLPDOIDgHJAlIaUUpRoFU3XAWgWR0CUQPUzsQd0dX2UKGgGaAloD0MIP3Jr0u2HZUCUhpRSlGgVTegDaBZHQJRDK3Td+G51fZQoaAZoCWgPQwg0LEZd61hlQJSGlFKUaBVN6ANoFkdAlEYPiT+vQnV9lChoBmgJaA9DCJFkVu/wemJAlIaUUpRoFU3oA2gWR0CURpO1fE4vdX2UKGgGaAloD0MI/KiG/Z7kS0CUhpRSlGgVS+9oFkdAlEi02gnMMnV9lChoBmgJaA9DCJ+tg4M98WZAlIaUUpRoFU3oA2gWR0CUTrklNUOvdX2UKGgGaAloD0MIgV1NnrJcYUCUhpRSlGgVTegDaBZHQJRQ7/0dzXB1fZQoaAZoCWgPQwhOnUfF/1dDQJSGlFKUaBVL+GgWR0CUU4PhybQUdX2UKGgGaAloD0MIb/QxHxADZUCUhpRSlGgVTegDaBZHQJRVFNlAeJZ1fZQoaAZoCWgPQwj27SQi/H84QJSGlFKUaBVL92gWR0CUXRnWrfcfdX2UKGgGaAloD0MIUvAUcqXCYUCUhpRSlGgVTegDaBZHQJRkPviLl3h1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:207c419a74bc5224ad61f6aa497b1c3d70ed7a5d8c782904f4906690d1c10d2f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b09d41403f23d49da3784264febfcee9e2a1044d4f43bca16cb8221fda76c3f9
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (250 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.717276982478, "std_reward": 25.302259480676486, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-28T23:15:36.048181"}