zhangir-azerbayev
commited on
Commit
·
f99619d
1
Parent(s):
b2ce480
update readme
Browse files- README.md +18 -8
- llemma.jpg +0 -0
- llemma.png +0 -0
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
- math
|
9 |
- reasoning
|
10 |
---
|
11 |
-
<img src="llemma.
|
12 |
|
13 |
[Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/)
|
14 |
|
@@ -29,12 +29,12 @@ On chain-of-thought mathematics tasks, Llemma models outperform Llama-2, Code Ll
|
|
29 |
| Model | Size | GSM8k | [OCW](https://openreview.net/forum?id=IFXTZERXdM7) | MMLU-STEM | [SAT](https://huggingface.co/datasets/mcaleste/sat_multiple_choice_math_may_23) | MATH |
|
30 |
|------------|------|--------|-------|-----------|-------|-------|
|
31 |
| Llama 2 | 7B | 11.8% | 3.7% | 29.9% | 25% | 3.2% |
|
32 |
-
| Code Llama | 7B | 10.5% | 4.4% | 25.1% | 9.4% | 4.
|
33 |
-
| LLEMMA | 7B | 36.4
|
34 |
-
| Minerva | 8B | 16.2% | 7.7
|
35 |
|------------|------|--------|-------|-----------|-------|-------|
|
36 |
-
| Code Llama | 34B | 29.6% | 7.0% | 40.5% | 40.6% |
|
37 |
-
| LLEMMA | 34B | 51.5
|
38 |
|------------|------|--------|-------|-----------|-------|-------|
|
39 |
| Minerva | 62B | 52.4% | 12.0% | 53.9% | - | 27.6% |
|
40 |
| Minerva | 540B | 58.8% | 17.6% | 63.9% | - | 33.6% |
|
@@ -44,10 +44,10 @@ Further performance can be extracted by using majority voting:
|
|
44 |
|
45 |
| Model | Size | GSM8k maj@100 | OCW maj@100 | MMLU-STEM maj@16 | SAT maj@16 | MATH maj@256 |
|
46 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
|
47 |
-
| LLEMMA | 7B | 54.0% | 14.3% | 49.9% | 78.1% |
|
48 |
| Minerva | 8B | 28.4% | 12.5% | 43.4% | - | 25.4% |
|
49 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
|
50 |
-
| LLEMMA | 34B | 69.3% | 18.4% | 59.7% | 81.3% |
|
51 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
|
52 |
| Minerva | 62B | 68.5% | 23.5% | 63.5% | - | 43.4% |
|
53 |
| Minerva | 540B | 78.5% | 30.8% | 75.0% | - | 50.3% |
|
@@ -55,5 +55,15 @@ Further performance can be extracted by using majority voting:
|
|
55 |
### Tool Use and Theorem Proving
|
56 |
In addition to chain-of-thought reasoning, Llemma has strong capabilities in computational mathematics tasks. For tool use and formal theorem proving evaluations, see [our paper](#).
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
|
|
8 |
- math
|
9 |
- reasoning
|
10 |
---
|
11 |
+
<img src="llemma.png" width="400">
|
12 |
|
13 |
[Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/)
|
14 |
|
|
|
29 |
| Model | Size | GSM8k | [OCW](https://openreview.net/forum?id=IFXTZERXdM7) | MMLU-STEM | [SAT](https://huggingface.co/datasets/mcaleste/sat_multiple_choice_math_may_23) | MATH |
|
30 |
|------------|------|--------|-------|-----------|-------|-------|
|
31 |
| Llama 2 | 7B | 11.8% | 3.7% | 29.9% | 25% | 3.2% |
|
32 |
+
| Code Llama | 7B | 10.5% | 4.4% | 25.1% | 9.4% | 4.5% |
|
33 |
+
| LLEMMA | 7B | **36.4%** | **7.7%** | **37.7%** | **53.1%** | **18.0%** |
|
34 |
+
| Minerva | 8B | 16.2% | **7.7%** | 35.6% | - | 14.1% |
|
35 |
|------------|------|--------|-------|-----------|-------|-------|
|
36 |
+
| Code Llama | 34B | 29.6% | 7.0% | 40.5% | 40.6% | 12.2% |
|
37 |
+
| LLEMMA | 34B | **51.5%** | **11.8%** | **49.0%** | **71.9%** | **25.0%** |
|
38 |
|------------|------|--------|-------|-----------|-------|-------|
|
39 |
| Minerva | 62B | 52.4% | 12.0% | 53.9% | - | 27.6% |
|
40 |
| Minerva | 540B | 58.8% | 17.6% | 63.9% | - | 33.6% |
|
|
|
44 |
|
45 |
| Model | Size | GSM8k maj@100 | OCW maj@100 | MMLU-STEM maj@16 | SAT maj@16 | MATH maj@256 |
|
46 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
|
47 |
+
| LLEMMA | 7B | 54.0% | 14.3% | 49.9% | 78.1% | **33.5** |
|
48 |
| Minerva | 8B | 28.4% | 12.5% | 43.4% | - | 25.4% |
|
49 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
|
50 |
+
| LLEMMA | 34B | 69.3% | 18.4% | 59.7% | 81.3% | **43.1%** |
|
51 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
|
52 |
| Minerva | 62B | 68.5% | 23.5% | 63.5% | - | 43.4% |
|
53 |
| Minerva | 540B | 78.5% | 30.8% | 75.0% | - | 50.3% |
|
|
|
55 |
### Tool Use and Theorem Proving
|
56 |
In addition to chain-of-thought reasoning, Llemma has strong capabilities in computational mathematics tasks. For tool use and formal theorem proving evaluations, see [our paper](#).
|
57 |
|
58 |
+
### Citation
|
59 |
+
```
|
60 |
+
@article{azerbayev2023llemma,
|
61 |
+
title={Llemma: an open language model for mathematics},
|
62 |
+
author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck},
|
63 |
+
eprint={xyz.xyz},
|
64 |
+
archivePrefix={arXiv}
|
65 |
+
year={2023}
|
66 |
+
}
|
67 |
+
```
|
68 |
|
69 |
|
llemma.jpg
DELETED
Binary file (269 kB)
|
|
llemma.png
ADDED