--- language: - en tags: - pytorch - causal-lm - pythia - pythia_v0 license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models match or exceed the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a table comparing the old and new names is provided in this model card, together with exact parameter counts. ## Pythia-12B ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai).
| Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10-3 | — | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10-4 | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10-4 | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10-4 | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10-4 | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10-4 | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10-4 | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10-4 | — |
Engineering details for the Pythia Suite. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have exactly the same architecture, and the same number of non-embedding parameters.
### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change over the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-12B for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-12B as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-12B has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-12B will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “understand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most “accurate” text. Never rely on Pythia-12B to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-12B may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-12B. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.
For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).
The Pile was **not** deduplicated before being used to train Pythia-12B. #### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 “actual” steps).
See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).
Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json).
Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM.
LAMBADA – OpenAI
Physical Interaction: Question Answering (PIQA)
WinoGrande
AI2 Reasoning Challenge—Challenge Set
SciQ
### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count.
| current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 |