Ella01 commited on
Commit
770edec
1 Parent(s): 926b8ca

Training complete

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9338842975206612
29
  - name: Recall
30
  type: recall
31
- value: 0.9508582968697409
32
  - name: F1
33
  type: f1
34
- value: 0.9422948632421615
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.986210042974039
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0625
48
- - Precision: 0.9339
49
- - Recall: 0.9509
50
- - F1: 0.9423
51
- - Accuracy: 0.9862
52
 
53
  ## Model description
54
 
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0763 | 1.0 | 1756 | 0.0717 | 0.8968 | 0.9286 | 0.9124 | 0.9810 |
83
- | 0.036 | 2.0 | 3512 | 0.0656 | 0.9268 | 0.9438 | 0.9352 | 0.9848 |
84
- | 0.0222 | 3.0 | 5268 | 0.0625 | 0.9339 | 0.9509 | 0.9423 | 0.9862 |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.40.1
90
- - Pytorch 2.2.1+cu121
91
  - Datasets 2.20.0
92
  - Tokenizers 0.19.1
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9493392070484582
29
  - name: Recall
30
  type: recall
31
+ value: 0.9577777777777777
32
  - name: F1
33
  type: f1
34
+ value: 0.9535398230088495
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9834710743801653
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0572
48
+ - Precision: 0.9493
49
+ - Recall: 0.9578
50
+ - F1: 0.9535
51
+ - Accuracy: 0.9835
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 125 | 0.0625 | 0.9304 | 0.9511 | 0.9407 | 0.9816 |
83
+ | No log | 2.0 | 250 | 0.0662 | 0.9409 | 0.9556 | 0.9482 | 0.9832 |
84
+ | No log | 3.0 | 375 | 0.0572 | 0.9493 | 0.9578 | 0.9535 | 0.9835 |
85
 
86
 
87
  ### Framework versions
88
 
89
+ - Transformers 4.41.2
90
+ - Pytorch 2.3.0+cu121
91
  - Datasets 2.20.0
92
  - Tokenizers 0.19.1