File size: 1,674 Bytes
183c12e
 
 
 
816a0da
 
183c12e
 
 
816a0da
 
183c12e
 
 
 
 
 
 
 
 
 
 
816a0da
183c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- EllieS/timedial_dpo
base_model: alignment-handbook/zephyr-7b-sft-full
model-index:
- name: zephyr-7b-dpo-lora-timedial
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-lora-timedial

This model is a fine-tuned version of [EllieS/zephyr-7b-sft-lora-timedial](https://huggingface.co/EllieS/zephyr-7b-sft-lora-timedial) on the EllieS/timedial_dpo dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0056
- Rewards/chosen: -0.5375
- Rewards/rejected: -5.7320
- Rewards/accuracies: 1.0
- Rewards/margins: 5.1945
- Logps/rejected: -611.0701
- Logps/chosen: -80.2486
- Logits/rejected: -2.2508
- Logits/chosen: -2.4113

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results



### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2