--- library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Lewis Hamilton pide perdón tras ser acusado de sexista por burlarse de su sobrino - text: 'Nuevas revelaciones del FIFA Gate: una cuenta ultra secreta y el temor reverencial a Julio Grondona' - text: Hallaron una inmensa `huella digital` en el espacio - text: Qué hacía Gastón Pauls viendo a la Selección con Lionel Messi y Sergio Agüero - text: 'Bitcoin: la volatilidad de las últimas semanas abre el debate sobre el futuro de la moneda' inference: true --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Evento | | | Perspectiva | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("EmanuelOrler/setfit-spanish-event-perspective") # Run inference preds = model("Hallaron una inmensa `huella digital` en el espacio") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 5 | 12.9231 | 24 | | Label | Training Sample Count | |:------------|:----------------------| | Evento | 22 | | Perspectiva | 17 | ### Training Hyperparameters - batch_size: (12, 12) - num_epochs: (4, 16) - max_steps: -1 - sampling_strategy: undersampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - evaluation_strategy: steps - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0159 | 1 | 0.0885 | - | | 0.1587 | 10 | 0.3927 | 0.2944 | | 0.3175 | 20 | 0.3039 | 0.2387 | | 0.4762 | 30 | 0.2466 | 0.1807 | | 0.6349 | 40 | 0.2049 | 0.1686 | | 0.7937 | 50 | 0.1803 | 0.1786 | | 0.9524 | 60 | 0.1319 | 0.2002 | | 1.1111 | 70 | 0.045 | 0.3103 | | 1.2698 | 80 | 0.0099 | 0.3200 | | 1.4286 | 90 | 0.0036 | 0.3845 | | 1.5873 | 100 | 0.0021 | 0.4078 | | 1.7460 | 110 | 0.0011 | 0.4184 | | 1.9048 | 120 | 0.0011 | 0.4186 | | 2.0635 | 130 | 0.0009 | 0.4282 | | 2.2222 | 140 | 0.0008 | 0.4242 | | 2.3810 | 150 | 0.0008 | 0.4269 | | 2.5397 | 160 | 0.0007 | 0.4303 | | 2.6984 | 170 | 0.0006 | 0.4301 | | 2.8571 | 180 | 0.0006 | 0.4321 | | 3.0159 | 190 | 0.0006 | 0.4311 | | 3.1746 | 200 | 0.0005 | 0.4291 | | 3.3333 | 210 | 0.0006 | 0.4322 | | 3.4921 | 220 | 0.0005 | 0.4315 | | 3.6508 | 230 | 0.0005 | 0.4308 | | 3.8095 | 240 | 0.0005 | 0.4307 | | 3.9683 | 250 | 0.0004 | 0.4312 | ### Framework Versions - Python: 3.10.14 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.44.0 - PyTorch: 2.4.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```