---
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Lewis Hamilton pide perdón tras ser acusado de sexista por burlarse de su
sobrino
- text: 'Nuevas revelaciones del FIFA Gate: una cuenta ultra secreta y el temor reverencial
a Julio Grondona'
- text: Hallaron una inmensa `huella digital` en el espacio
- text: Qué hacía Gastón Pauls viendo a la Selección con Lionel Messi y Sergio Agüero
- text: 'Bitcoin: la volatilidad de las últimas semanas abre el debate sobre el futuro
de la moneda'
inference: true
---
# SetFit
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evento |
- 'El dólar vuelve a subir a la espera de una decisión clave del Banco Central'
- 'Viernes caluroso y sin lluvias'
- 'ARA San Juan | El dolor de los familiares tras la retirada de EEUU: `Nos están dejando sin recursos para buscar`'
|
| Perspectiva | - 'El futuro de la educación tras la pandemia: ¿hacia un modelo híbrido permanente?'
- '¿Cómo impacta la automatización en los trabajos de baja calificación?'
- 'Feminicidios: Falta una construcción social y cultural contra la violencia'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("EmanuelOrler/setfit-spanish-event-perspective")
# Run inference
preds = model("Hallaron una inmensa `huella digital` en el espacio")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 12.9231 | 24 |
| Label | Training Sample Count |
|:------------|:----------------------|
| Evento | 22 |
| Perspectiva | 17 |
### Training Hyperparameters
- batch_size: (12, 12)
- num_epochs: (4, 16)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: steps
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0159 | 1 | 0.0885 | - |
| 0.1587 | 10 | 0.3927 | 0.2944 |
| 0.3175 | 20 | 0.3039 | 0.2387 |
| 0.4762 | 30 | 0.2466 | 0.1807 |
| 0.6349 | 40 | 0.2049 | 0.1686 |
| 0.7937 | 50 | 0.1803 | 0.1786 |
| 0.9524 | 60 | 0.1319 | 0.2002 |
| 1.1111 | 70 | 0.045 | 0.3103 |
| 1.2698 | 80 | 0.0099 | 0.3200 |
| 1.4286 | 90 | 0.0036 | 0.3845 |
| 1.5873 | 100 | 0.0021 | 0.4078 |
| 1.7460 | 110 | 0.0011 | 0.4184 |
| 1.9048 | 120 | 0.0011 | 0.4186 |
| 2.0635 | 130 | 0.0009 | 0.4282 |
| 2.2222 | 140 | 0.0008 | 0.4242 |
| 2.3810 | 150 | 0.0008 | 0.4269 |
| 2.5397 | 160 | 0.0007 | 0.4303 |
| 2.6984 | 170 | 0.0006 | 0.4301 |
| 2.8571 | 180 | 0.0006 | 0.4321 |
| 3.0159 | 190 | 0.0006 | 0.4311 |
| 3.1746 | 200 | 0.0005 | 0.4291 |
| 3.3333 | 210 | 0.0006 | 0.4322 |
| 3.4921 | 220 | 0.0005 | 0.4315 |
| 3.6508 | 230 | 0.0005 | 0.4308 |
| 3.8095 | 240 | 0.0005 | 0.4307 |
| 3.9683 | 250 | 0.0004 | 0.4312 |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```