|
--- |
|
license: llama3 |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
language: |
|
- en |
|
tags: |
|
- openchat |
|
- llama3 |
|
- C-RLFT |
|
- ONNX |
|
- DML |
|
- DirectML |
|
- ONNXRuntime |
|
- conversational |
|
- custom_code |
|
pipeline_tag: text-generation |
|
--- |
|
# openchat-3.6-8b-20240522 ONNX |
|
|
|
## Model Summary |
|
|
|
This repository contains the ONNX-optimized version of [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522), designed to accelerate inference using ONNX Runtime. These optimizations are specifically tailored for CPU and DirectML. DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, offering GPU acceleration across a wide range of supported hardware and drivers, including those from AMD, Intel, NVIDIA, and Qualcomm. |
|
|
|
## Optimized Configurations |
|
|
|
The following optimized configurations are available: |
|
|
|
- **ONNX model for int4 DirectML:** Optimized for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. |
|
- **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4. |
|
|
|
## Usage |
|
|
|
### Installation and Setup |
|
|
|
To use the EmbeddedLLM/openchat-3.6-8b-20240522-onnx model on Windows with DirectML, follow these steps: |
|
|
|
1. **Create and activate a Conda environment:** |
|
```sh |
|
conda create -n onnx python=3.10 |
|
conda activate onnx |
|
``` |
|
|
|
2. **Install Git LFS:** |
|
```sh |
|
winget install -e --id GitHub.GitLFS |
|
``` |
|
|
|
3. **Install Hugging Face CLI:** |
|
```sh |
|
pip install huggingface-hub[cli] |
|
``` |
|
|
|
4. **Download the model:** |
|
```sh |
|
huggingface-cli download EmbeddedLLM/openchat-3.6-8b-20240522-onnx --include="onnx/directml/*" --local-dir .\openchat-3.6-8b-20240522-onnx |
|
``` |
|
|
|
5. **Install necessary Python packages:** |
|
```sh |
|
pip install numpy |
|
pip install onnxruntime-directml |
|
pip install --pre onnxruntime-genai-directml |
|
``` |
|
|
|
6. **Install Visual Studio 2015 runtime:** |
|
```sh |
|
conda install conda-forge::vs2015_runtime |
|
``` |
|
|
|
7. **Download the example script:** |
|
```sh |
|
Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py" |
|
``` |
|
|
|
8. **Run the example script:** |
|
```sh |
|
python phi3-qa.py -m .\openchat-3.6-8b-20240522-onnx |
|
``` |
|
|
|
### Hardware Requirements |
|
|
|
**Minimum Configuration:** |
|
- **Windows:** DirectX 12-capable GPU (AMD/Nvidia) |
|
- **CPU:** x86_64 / ARM64 |
|
|
|
**Tested Configurations:** |
|
- **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) |
|
- **CPU:** AMD Ryzen CPU |
|
|
|
## Citation |
|
``` |
|
@article{wang2023openchat, |
|
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data}, |
|
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang}, |
|
journal={arXiv preprint arXiv:2309.11235}, |
|
year={2023} |
|
} |
|
``` |