Emperor-WS commited on
Commit
e47c460
1 Parent(s): d0f8b3a

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Walker2DBulletEnv-v0
16
+ type: Walker2DBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2280.24 +/- 566.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TD3** Agent playing **Walker2DBulletEnv-v0**
25
+ This is a trained model of a **TD3** agent playing **Walker2DBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo td3 --env Walker2DBulletEnv-v0 -orga Emperor-WS -f logs/
47
+ python -m rl_zoo3.enjoy --algo td3 --env Walker2DBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo td3 --env Walker2DBulletEnv-v0 -orga Emperor-WS -f logs/
53
+ python -m rl_zoo3.enjoy --algo td3 --env Walker2DBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo td3 --env Walker2DBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo td3 --env Walker2DBulletEnv-v0 -f logs/ -orga Emperor-WS
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 200000),
67
+ ('gamma', 0.98),
68
+ ('gradient_steps', 1),
69
+ ('learning_rate', 0.0007),
70
+ ('learning_starts', 10000),
71
+ ('n_timesteps', 1000000.0),
72
+ ('noise_std', 0.1),
73
+ ('noise_type', 'normal'),
74
+ ('policy', 'MlpPolicy'),
75
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
76
+ ('train_freq', 1),
77
+ ('normalize', False)])
78
+ ```
79
+
80
+ # Environment Arguments
81
+ ```python
82
+ {'render_mode': 'rgb_array'}
83
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Walker2DBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - 600000
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 2253046436
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - rl-trained-agents/td3/Walker2DBulletEnv-v0_1/Walker2DBulletEnv-v0.zip
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 200000
6
+ - - gamma
7
+ - 0.98
8
+ - - gradient_steps
9
+ - 1
10
+ - - learning_rate
11
+ - 0.0007
12
+ - - learning_starts
13
+ - 10000
14
+ - - n_timesteps
15
+ - 1000000.0
16
+ - - noise_std
17
+ - 0.1
18
+ - - noise_type
19
+ - normal
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[400, 300])
24
+ - - train_freq
25
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfe60b2e56223656a01a4f44b1512dbdbeadda3b3b0fb2e25d31e8d7be53f840
3
+ size 1079359
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2280.2354861, "std_reward": 566.5869815252843, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-27T18:13:52.775860"}
td3-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea13926535bfb4d8c538cd51c993e57382eac2638e2d95e5053203467fb6f619
3
+ size 6377441
td3-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.0a2
td3-Walker2DBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7102001e0f8061cacf97e3c3e0779807b10cd1a9ae0a9d120c5bdb800d804e72
3
+ size 1055712
td3-Walker2DBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bcc66586db9bbc0246aea70e43f58ea8841e4544b7df91b1ff78277dcd53ebb
3
+ size 2125034
td3-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.td3.policies.Actor'>, 'actor_target': <class 'stable_baselines3.td3.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function TD3Policy.__init__ at 0x7f61d2dd53f0>",
9
+ "_build": "<function TD3Policy._build at 0x7f61d2dd5480>",
10
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f61d2dd5510>",
11
+ "make_actor": "<function TD3Policy.make_actor at 0x7f61d2dd55a0>",
12
+ "make_critic": "<function TD3Policy.make_critic at 0x7f61d2dd5630>",
13
+ "forward": "<function TD3Policy.forward at 0x7f61d2dd56c0>",
14
+ "_predict": "<function TD3Policy._predict at 0x7f61d2dd5750>",
15
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f61d2dd57e0>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7f61d2dcf280>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "net_arch": [
22
+ 400,
23
+ 300
24
+ ]
25
+ },
26
+ "num_timesteps": 600000,
27
+ "_total_timesteps": 600000,
28
+ "_num_timesteps_at_start": 0,
29
+ "seed": 0,
30
+ "action_noise": {
31
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
32
+ ":serialized:": "gAWVUQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwaFlIwBQ5R0lFKUjAZfc2lnbWGUaAgoljAAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwaFlGgTdJRSlIwGX2R0eXBllGgKjAdmbG9hdDMylJOUdWIu",
33
+ "_mu": "[0. 0. 0. 0. 0. 0.]",
34
+ "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]",
35
+ "_dtype": "<class 'numpy.float32'>"
36
+ },
37
+ "start_time": 1709052081407180069,
38
+ "learning_rate": {
39
+ ":type:": "<class 'function'>",
40
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
41
+ },
42
+ "tensorboard_log": null,
43
+ "_last_obs": null,
44
+ "_last_episode_starts": {
45
+ ":type:": "<class 'numpy.ndarray'>",
46
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
47
+ },
48
+ "_last_original_obs": {
49
+ ":type:": "<class 'numpy.ndarray'>",
50
+ ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAF05v74AAAAAAACAPyHdBD8AAAAAUBRLvQAAAAC1LWC/TNvBPkgknz7EFHa+k0icvhe1PT/rH8k+3iQOPw//KL9iIBm+HG2ZPvdVgT+hcSs7AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLFoaUjAFDlHSUUpQu"
51
+ },
52
+ "_episode_num": 1685,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKPyFGWldkeMAWyUTegDjAF0lEdAsd1RVktmMHV9lChoBkdAo8iq1TisGWgHTegDaAhHQLHl5nLJSzh1fZQoaAZHQKOiZnVXmvJoB03oA2gIR0Cx7o04vN/wdX2UKGgGR0CjryPI4lyBaAdN6ANoCEdAsfcFVR1ox3V9lChoBkdAo/iVFtsN2GgHTegDaAhHQLH/sCpWFOB1fZQoaAZHQKPG0q7yxzJoB03oA2gIR0CyCBcqOLiudX2UKGgGR0CjQDUFSsKcaAdN6ANoCEdAshDpq59Vm3V9lChoBkdAo7JObutwJmgHTegDaAhHQLIZhda+vhZ1fZQoaAZHQKO9wa0hNdtoB03oA2gIR0CyIhVHjIaMdX2UKGgGR0CjpPkd/8VIaAdN6ANoCEdAsirqoGY8dXV9lChoBkdAo+jLrNW2gGgHTegDaAhHQLIzihXKbKB1fZQoaAZHQGpL4RVZLZloB0tuaAhHQLI0dP8hs691fZQoaAZHQKM5O1IAfdRoB03oA2gIR0CyPQlum78OdX2UKGgGR0Cjfguh0yP/aAdN6ANoCEdAskWAleF+NXV9lChoBkdAj/ZqFqSHM2gHTasBaAhHQLJJXB8hLXd1fZQoaAZHQKNwc/u9eyBoB03oA2gIR0CyUcY6nzg/dX2UKGgGR0CWTqVkc0cfaAdNUgJoCEdAsl6/bM5fdHV9lChoBkdAoylKbBoEjmgHTegDaAhHQLJnaYbbUPR1fZQoaAZHQEnoPsiSq2loB0swaAhHQLJn0/bTMJR1fZQoaAZHQKNLCN4qwyJoB03oA2gIR0CycHmOlwcYdX2UKGgGR0Ci6vlwtJ4CaAdN6ANoCEdAsnkR6ol2NnV9lChoBkdAoqh++9Jz1mgHTegDaAhHQLKBpbRWtEJ1fZQoaAZHQKLeQyk9ECxoB03oA2gIR0CyiklKCg9NdX2UKGgGR0CjPFewTufFaAdN6ANoCEdAspLQqoZQ53V9lChoBkdAowWlhG6PKmgHTegDaAhHQLKb885CF9N1fZQoaAZHQKKXLwNsnAtoB03oA2gIR0CypLYVdonKdX2UKGgGR0CjPuN8VpK0aAdN6ANoCEdAsq1wWEbo83V9lChoBkdAo0tDsY2sJmgHTegDaAhHQLK1/XMQmNR1fZQoaAZHQKNMN9YwIt1oB03oA2gIR0CyvoTbFjusdX2UKGgGR0CjqTNXxOLzaAdN6ANoCEdAssdHS5RTCXV9lChoBkdAo6zONT987mgHTegDaAhHQLLQDmQKa5R1fZQoaAZHQJUD5Hy3CsRoB00hAmgIR0Cy1N+tSydGdX2UKGgGR0CjV4G/N7jUaAdN6ANoCEdAst19gXuVo3V9lChoBkdAow3o3R5TqGgHTegDaAhHQLLmGjiXIEN1fZQoaAZHQKKh6KsuFpRoB03oA2gIR0Cy7q06T4cndX2UKGgGR0CjBXtITXaraAdN6ANoCEdAsvcwtmL9/HV9lChoBkdAowaM5dWyT2gHTegDaAhHQLL/swWnCO51fZQoaAZHQKL2NxiobXJoB03oA2gIR0CzCHu6RQrMdX2UKGgGR0CjGFwFs54oaAdN6ANoCEdAsxFVuFYdQ3V9lChoBkdAouxNPi1iOWgHTegDaAhHQLMaPQZGax51fZQoaAZHQKLSupjMFEBoB03oA2gIR0CzIu07bL2YdX2UKGgGR0CiJaPt2LYPaAdN6ANoCEdAsyuLaSLZSXV9lChoBkdAoePfJtBOYmgHTegDaAhHQLM8SQC0WuZ1fZQoaAZHQKKh2fA9FF5oB03oA2gIR0CzRTpjx0+1dX2UKGgGR0Ch8xeIVM24aAdN6ANoCEdAs03voV2zOXV9lChoBkdAogiIK2KEWmgHTegDaAhHQLNWnRs/IKd1fZQoaAZHQKJNARcNYr9oB03oA2gIR0CzX1Tx5LRKdX2UKGgGR0CFqpDHfdhzaAdNQwFoCEdAs2I9kwvg33V9lChoBkdAou2vTI/7i2gHTegDaAhHQLNq5lCCz1N1fZQoaAZHQKKvUKjSG8FoB03oA2gIR0Czc49LcsUZdX2UKGgGR0CivDW/ag27aAdN6ANoCEdAs3w3433pOnV9lChoBkdAouTTk+5e7mgHTegDaAhHQLOE1AI6bON1fZQoaAZHQJKMH5Kvmo1oB03vAWgIR0CziSk2DQJHdX2UKGgGR0CiV8gxagVXaAdN6ANoCEdAs5HY4ZMtb3V9lChoBkdAozsUl/pdKWgHTegDaAhHQLOaep9JBgN1fZQoaAZHQGQ6Hf2saKloB0tfaAhHQLObVJ0GNaR1fZQoaAZHQKOhI+UyHmBoB03oA2gIR0CzpA5QUHpsdX2UKGgGR0ChoVyg5BC2aAdNiwNoCEdAs6v06aLGaXV9lChoBkdAo44cN4JNTWgHTegDaAhHQLO0s2hIvrZ1fZQoaAZHQKOMmgOBlMBoB03oA2gIR0CzvZG6K+BZdX2UKGgGR0CjBQ2ldkauaAdN6ANoCEdAs8a7nZCfH3V9lChoBkdAo8bZHskY42gHTegDaAhHQLPPtPJaJRB1fZQoaAZHQKO/agRsdktoB03oA2gIR0Cz2Gm+9Jz1dX2UKGgGR0CjsMy08eS0aAdN6ANoCEdAs+FSUaAFxHV9lChoBkdAm5T2qcVgyGgHTc0CaAhHQLPnqUL2HtZ1fZQoaAZHQKOu4UILPUtoB03oA2gIR0Cz8G3Ah0QsdX2UKGgGR0Cjyz6QeV9naAdN6ANoCEdAs/k78iwB53V9lChoBkdAo12nVTaTOmgHTegDaAhHQLQCEhGpdbB1fZQoaAZHQKMb1rJKaodoB03oA2gIR0C0Cu66OHWSdX2UKGgGR0Cjbf4NqgyuaAdN6ANoCEdAtBPVkxyn1nV9lChoBkdAoyrxUedTYWgHTegDaAhHQLQklXAdn011fZQoaAZHQKNpFcIqsltoB03oA2gIR0C0LVCApazNdX2UKGgGR0BsmgrtmcvvaAdLcWgIR0C0LkfjjrAydX2UKGgGR0CjXuT850bMaAdN6ANoCEdAtDcdITXarXV9lChoBkdAo8i0WZZ0S2gHTegDaAhHQLQ/+Vy3kPt1fZQoaAZHQJgw6FYdQwdoB016AmgIR0C0RYNy1eBydX2UKGgGR0Cjy47KaG5+aAdN6ANoCEdAtE4wHUtqYnV9lChoBkdAo9Z7GaQV9GgHTegDaAhHQLRW7Tho/Rp1fZQoaAZHQKL0TxNqQBBoB03oA2gIR0C0X8piiItUdX2UKGgGR0CjuzfICEHuaAdN6ANoCEdAtGiiXfIjnnV9lChoBkdAo9t1aW5Yo2gHTegDaAhHQLRxiFFDv3J1fZQoaAZHQKQLugieNDNoB03oA2gIR0C0elm7FsHjdX2UKGgGR0CjlmT5wfhdaAdN6ANoCEdAtIMvqgRK6HV9lChoBkdAo+IGgzxgA2gHTegDaAhHQLSL/fjjrAx1fZQoaAZHQKPOuwjdHlRoB03oA2gIR0C0lO/NqxkedX2UKGgGR0Cj92onjQzDaAdN6ANoCEdAtJ27tsvZiHV9lChoBkdAo+wiQYDT0GgHTegDaAhHQLSmh1ejVQR1fZQoaAZHQKPgECoS+QFoB03oA2gIR0C0r1Pnr6cidX2UKGgGR0BFuWIGhVU/aAdLJWgIR0C0r6QaR6njdX2UKGgGR0Bttbifg75maAdLdmgIR0C0sK2v8qFzdX2UKGgGR0CkK6xoysS1aAdN6ANoCEdAtLmUAOrhi3V9lChoBkdApAP3jsD4g2gHTegDaAhHQLTCd7uDzy11fZQoaAZHQKOwcBU70WdoB03oA2gIR0C0y00JBw+/dX2UKGgGR0A0uOerdWQwaAdLE2gIR0C0y3gbIcR2dX2UKGgGR0A2CrOqvNeMaAdLFGgIR0C0y6leF+NMdX2UKGgGR0CkLsZSm65HaAdN6ANoCEdAtNRsgTyrgnV9lChoBkdApCPwy6+WW2gHTegDaAhHQLTdVW5paid1fZQoaAZHQKQI7CxeLNxoB03oA2gIR0C05f5lz2eydX2UKGgGR0CVnHtGd7OWaAdNKwJoCEdAtOrv4xk/bHV9lChoBkdAo9zWeHzpYGgHTegDaAhHQLTztqZc9nt1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 1580341,
66
+ "observation_space": {
67
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
68
+ ":serialized:": "gAWVWwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxaFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLFoWUaBl0lFKUjAZfc2hhcGWUSxaFlIwDbG93lGgRKJZYAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLFoWUaBl0lFKUjARoaWdolGgRKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
69
+ "dtype": "float32",
70
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
71
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
72
+ "_shape": [
73
+ 22
74
+ ],
75
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
76
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
77
+ "low_repr": "-inf",
78
+ "high_repr": "inf",
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
83
+ ":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
84
+ "dtype": "float32",
85
+ "bounded_below": "[ True True True True True True]",
86
+ "bounded_above": "[ True True True True True True]",
87
+ "_shape": [
88
+ 6
89
+ ],
90
+ "low": "[-1. -1. -1. -1. -1. -1.]",
91
+ "high": "[1. 1. 1. 1. 1. 1.]",
92
+ "low_repr": "-1.0",
93
+ "high_repr": "1.0",
94
+ "_np_random": "Generator(PCG64)"
95
+ },
96
+ "n_envs": 1,
97
+ "buffer_size": 1,
98
+ "batch_size": 256,
99
+ "learning_starts": 10000,
100
+ "tau": 0.005,
101
+ "gamma": 0.98,
102
+ "gradient_steps": 1,
103
+ "optimize_memory_usage": false,
104
+ "replay_buffer_class": {
105
+ ":type:": "<class 'abc.ABCMeta'>",
106
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
107
+ "__module__": "stable_baselines3.common.buffers",
108
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
109
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
110
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f619ad41360>",
111
+ "add": "<function ReplayBuffer.add at 0x7f619ad413f0>",
112
+ "sample": "<function ReplayBuffer.sample at 0x7f619ad41480>",
113
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f619ad41510>",
114
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f619ad415a0>)>",
115
+ "__abstractmethods__": "frozenset()",
116
+ "_abc_impl": "<_abc._abc_data object at 0x7f619acc4780>"
117
+ },
118
+ "replay_buffer_kwargs": {},
119
+ "train_freq": {
120
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
121
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
122
+ },
123
+ "use_sde_at_warmup": false,
124
+ "policy_delay": 2,
125
+ "target_noise_clip": 0.5,
126
+ "target_policy_noise": 0.2,
127
+ "lr_schedule": {
128
+ ":type:": "<class 'function'>",
129
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
130
+ },
131
+ "actor_batch_norm_stats": [],
132
+ "critic_batch_norm_stats": [],
133
+ "actor_batch_norm_stats_target": [],
134
+ "critic_batch_norm_stats_target": []
135
+ }
td3-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe398a362477677bd7cf573823ee556af815783169cf0c2b0c6db2997fe0d1ee
3
+ size 3178154
td3-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
td3-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.3.0a2
4
+ - PyTorch: 2.1.2
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5776e272929342c76f3a989ea7d5e209fabc9ad0c4f05c7e05d007a5c52b1a58
3
+ size 46648