File size: 4,769 Bytes
6c4f5b2 f8beda1 6c4f5b2 f8beda1 6c4f5b2 f8beda1 6c4f5b2 f8beda1 6c4f5b2 f8beda1 6c4f5b2 f8beda1 6c4f5b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer library_name: peft model-index: - name: work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-Instruct-hf base_model_config: codellama/CodeLlama-7b-Instruct-hf bf16: true dataset_prepared_path: null datasets: - path: /work/10283/sarella/ls6/exlong-internal/_work/setup/conditionnestack2e-no-name-ft/train/train/train-conditionnestack2e-no-name-ft.jsonl type: field_input: input field_instruction: instruction field_output: output field_system: system format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: You are a helpful programming assistant and an expert Java programmer. You are helping a user writing exceptional-behavior tests for their Java code. debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false eval_steps: 20 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false is_llama_derived_model: true learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 4 model_type: LlamaForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: /work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true save_steps: null seed: 123 sequence_len: 4096 special_tokens: bos_token: <s> eos_token: </s> unk_token: <unk> strict: false tf32: false tokenizer_type: CodeLlamaTokenizer train_on_inputs: false val_set_size: 0.01 wandb_entity: null wandb_log_model: null wandb_project: null wandb_run_id: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 123 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8379 | 0.01 | 1 | 1.0354 | | 0.3779 | 0.16 | 20 | 0.4820 | | 0.3361 | 0.31 | 40 | 0.4560 | | 0.3153 | 0.47 | 60 | 0.4467 | | 0.2735 | 0.63 | 80 | 0.4457 | | 0.2437 | 0.78 | 100 | 0.4400 | | 0.2941 | 0.94 | 120 | 0.4416 | | 0.2153 | 1.08 | 140 | 0.4466 | | 0.2583 | 1.23 | 160 | 0.4499 | | 0.2026 | 1.39 | 180 | 0.4540 | | 0.185 | 1.55 | 200 | 0.4541 | | 0.2296 | 1.7 | 220 | 0.4604 | | 0.2059 | 1.86 | 240 | 0.4591 | | 0.1998 | 2.02 | 260 | 0.4626 | | 0.1879 | 2.15 | 280 | 0.4828 | | 0.1861 | 2.31 | 300 | 0.4944 | | 0.1561 | 2.47 | 320 | 0.4947 | | 0.1888 | 2.62 | 340 | 0.4939 | | 0.1665 | 2.78 | 360 | 0.4945 | | 0.1627 | 2.94 | 380 | 0.4931 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.0 |