File size: 4,769 Bytes
6c4f5b2
 
 
 
 
 
 
f8beda1
6c4f5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8beda1
6c4f5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8beda1
6c4f5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8beda1
6c4f5b2
 
 
f8beda1
6c4f5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8beda1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4f5b2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: llama2
base_model: codellama/CodeLlama-7b-Instruct-hf
tags:
- generated_from_trainer
library_name: peft
model-index:
- name: work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
adapter: lora
base_model: codellama/CodeLlama-7b-Instruct-hf
base_model_config: codellama/CodeLlama-7b-Instruct-hf
bf16: true
dataset_prepared_path: null
datasets:
- path: /work/10283/sarella/ls6/exlong-internal/_work/setup/conditionnestack2e-no-name-ft/train/train/train-conditionnestack2e-no-name-ft.jsonl
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    field_system: system
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: You are a helpful programming assistant and an expert Java programmer.
      You are helping a user writing exceptional-behavior tests for their Java code.
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: false
eval_steps: 20
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: /work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
save_steps: null
seed: 123
sequence_len: 4096
special_tokens:
  bos_token: <s>
  eos_token: </s>
  unk_token: <unk>
strict: false
tf32: false
tokenizer_type: CodeLlamaTokenizer
train_on_inputs: false
val_set_size: 0.01
wandb_entity: null
wandb_log_model: null
wandb_project: null
wandb_run_id: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123

This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4931

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8379        | 0.01  | 1    | 1.0354          |
| 0.3779        | 0.16  | 20   | 0.4820          |
| 0.3361        | 0.31  | 40   | 0.4560          |
| 0.3153        | 0.47  | 60   | 0.4467          |
| 0.2735        | 0.63  | 80   | 0.4457          |
| 0.2437        | 0.78  | 100  | 0.4400          |
| 0.2941        | 0.94  | 120  | 0.4416          |
| 0.2153        | 1.08  | 140  | 0.4466          |
| 0.2583        | 1.23  | 160  | 0.4499          |
| 0.2026        | 1.39  | 180  | 0.4540          |
| 0.185         | 1.55  | 200  | 0.4541          |
| 0.2296        | 1.7   | 220  | 0.4604          |
| 0.2059        | 1.86  | 240  | 0.4591          |
| 0.1998        | 2.02  | 260  | 0.4626          |
| 0.1879        | 2.15  | 280  | 0.4828          |
| 0.1861        | 2.31  | 300  | 0.4944          |
| 0.1561        | 2.47  | 320  | 0.4947          |
| 0.1888        | 2.62  | 340  | 0.4939          |
| 0.1665        | 2.78  | 360  | 0.4945          |
| 0.1627        | 2.94  | 380  | 0.4931          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.0