--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer library_name: peft model-index: - name: work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-with-name-ft/lora-codellama-7b-123 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-Instruct-hf base_model_config: codellama/CodeLlama-7b-Instruct-hf bf16: true dataset_prepared_path: null datasets: - path: /work/10283/sarella/ls6/exlong-internal/_work/setup/conditionnestack2e-with-name-ft/train/train/train-conditionnestack2e-with-name-ft.jsonl type: field_input: input field_instruction: instruction field_output: output field_system: system format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: You are a helpful programming assistant and an expert Java programmer. You are helping a user writing exceptional-behavior tests for their Java code. debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false eval_steps: 20 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false is_llama_derived_model: true learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 4 model_type: LlamaForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: /work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-with-name-ft/lora-codellama-7b-123 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true save_steps: null seed: 123 sequence_len: 4096 special_tokens: bos_token: eos_token: unk_token: strict: false tf32: false tokenizer_type: CodeLlamaTokenizer train_on_inputs: false val_set_size: 0.01 wandb_entity: null wandb_log_model: null wandb_project: null wandb_run_id: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-with-name-ft/lora-codellama-7b-123 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 123 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.631 | 0.01 | 1 | 0.7976 | | 0.2584 | 0.16 | 20 | 0.3000 | | 0.2045 | 0.31 | 40 | 0.2802 | | 0.1596 | 0.47 | 60 | 0.2725 | | 0.2024 | 0.62 | 80 | 0.2715 | | 0.1613 | 0.78 | 100 | 0.2638 | | 0.1341 | 0.93 | 120 | 0.2638 | | 0.1295 | 1.07 | 140 | 0.2672 | | 0.122 | 1.22 | 160 | 0.2694 | | 0.1247 | 1.38 | 180 | 0.2711 | | 0.1344 | 1.53 | 200 | 0.2733 | | 0.1329 | 1.69 | 220 | 0.2796 | | 0.1095 | 1.85 | 240 | 0.2731 | | 0.1167 | 2.0 | 260 | 0.2751 | | 0.0929 | 2.14 | 280 | 0.2849 | | 0.1112 | 2.3 | 300 | 0.2927 | | 0.1132 | 2.45 | 320 | 0.2856 | | 0.0876 | 2.61 | 340 | 0.2915 | | 0.0982 | 2.76 | 360 | 0.2894 | | 0.1042 | 2.92 | 380 | 0.2909 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.0