EngrSamad commited on
Commit
c0eeb85
·
verified ·
1 Parent(s): 132905f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -34
README.md CHANGED
@@ -1,6 +1,12 @@
1
  ---
2
  license: mit
3
  pipeline_tag: text-classification
 
 
 
 
 
 
4
  ---
5
  # Nexus Bank Loan Default Prediction Model
6
 
@@ -21,37 +27,4 @@ To use the model, you can input the salary and number of dependents of a custome
21
 
22
  ## Data Source
23
 
24
- The data used for training this model was obtained from Nexus Bank.
25
-
26
- import pandas as pd
27
- import numpy as np
28
- import seaborn as sns
29
- import matplotlib.pyplot as plt
30
- %matplotlib inline
31
- nexus_bank = pd.read_csv('nexus_bank_dataa.csv')
32
- nexus_bank.head()
33
- from sklearn.model_selection import train_test_split
34
- X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, random_state=90)
35
- from sklearn.neighbors import KNeighborsClassifier
36
- knn_classifier =KNeighborsClassifier()
37
- knn_classifier.fit(X_train,y_train)
38
- knn_predict = knn_classifier.predict(X_test)
39
- knn_predict
40
- import gradio as gr
41
-
42
- # Prediction function
43
- def predict_defaulter(salary, dependents):
44
- input_data = [[salary, dependents]]
45
- knn_predict = knn_classifier.predict(input_data)
46
- return "Yes! its Defaulter" if knn_predict[0] == 1 else "No! its not Defaulter"
47
-
48
- # Interface
49
- interface = gr.Interface(
50
- fn=predict_defaulter,
51
- inputs=["number", "number"],
52
- outputs="text",
53
- title="Defaulter Prediction"
54
- )
55
-
56
- # Launch the interface
57
- interface.launch()
 
1
  ---
2
  license: mit
3
  pipeline_tag: text-classification
4
+ datasets:
5
+ - HuggingFaceTB/cosmopedia
6
+ metrics:
7
+ - accuracy
8
+ tags:
9
+ - finance
10
  ---
11
  # Nexus Bank Loan Default Prediction Model
12
 
 
27
 
28
  ## Data Source
29
 
30
+ The data used for training this model was obtained from Nexus Bank.