--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Accuracy: 0.9879 - F1: 0.9878 - Precision: 0.9879 - Recall: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0858 | 1.0 | 3131 | 0.0892 | 0.9815 | 0.9815 | 0.9816 | 0.9815 | | 0.0457 | 2.0 | 6262 | 0.0726 | 0.9856 | 0.9856 | 0.9856 | 0.9856 | | 0.0057 | 3.0 | 9393 | 0.1004 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1