import torch from transformers import PhiForCausalLM from .configuration_pruned_phi import PhiPrunedConfig import torch.nn as nn class PhiPrunedForCausalLM(PhiForCausalLM): config_class = PhiPrunedConfig def __init__(self, config: PhiPrunedConfig): super().__init__(config) for i in range(32): self.model.layers[i].self_attn.dense = nn.Linear(640, 2560, bias=True) self.model.layers[i].self_attn.hidden_size = 640 self.model.layers[i].self_attn.q_proj = nn.Linear(2560, 640, bias=True) self.model.layers[i].self_attn.k_proj = nn.Linear(2560, 640, bias=True) self.model.layers[i].self_attn.v_proj = nn.Linear(2560, 640, bias=True) self.model.layers[i].mlp.fc1 = nn.Linear(2560, 10240, bias=True) self.model.layers[i].mlp.fc2 = nn.Linear(10240, 2560, bias=True) for layer in self.model.layers: layer.self_attn.num_heads = layer.self_attn.q_proj.weight.data.shape[0] // layer.self_attn.head_dim layer.self_attn.num_key_value_heads = layer.self_attn.k_proj.weight.data.shape[ 0] // layer.self_attn.head_dim