Ericu950 commited on
Commit
97f41eb
1 Parent(s): 08552f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -25
README.md CHANGED
@@ -21,13 +21,35 @@ This model is fine-tuned on the Ericu950/Papyri_1 dataset, which consists of Gre
21
 
22
  ## Usage
23
 
24
- To run the model, use the following code:
 
 
25
 
26
  ```python
27
  import json
28
  from transformers import pipeline, AutoTokenizer, LlamaForCausalLM
29
  import torch
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  papyrus_edition = """
32
  ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
33
  ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
@@ -49,22 +71,6 @@ papyrus_edition = """
49
  ησσον· δ -----ιων ομολογιαν συνεχωρησεν·
50
  """
51
 
52
- model_id = "Ericu950/Papy_1_Llama-3.1-8B-Instruct_date"
53
-
54
- model = LlamaForCausalLM.from_pretrained(
55
- model_id,
56
- device_map="auto",
57
- )
58
-
59
- tokenizer = AutoTokenizer.from_pretrained(model_id)
60
-
61
- generation_pipeline = pipeline(
62
- "text-generation",
63
- model=model,
64
- tokenizer=tokenizer,
65
- device_map="auto",
66
- )
67
-
68
  system_prompt = "Date this papyrus fragment to an exact year!"
69
 
70
  input_messages = [
@@ -80,7 +86,7 @@ terminators = [
80
  outputs = generation_pipeline(
81
  input_messages,
82
  max_new_tokens=4,
83
- num_beams=20,
84
  num_return_sequences=1,
85
  early_stopping=True,
86
  )
@@ -98,25 +104,25 @@ print(f"Year: {real_response}")
98
  for i, content in enumerate(beam_contents, start=1):
99
  print(f"Suggestion {i}: {content}")
100
  ```
101
-
102
- You should get this output:
103
  ```
104
  Year: 71 or 72 AD
105
  Suggestion 1: 71
106
  ```
107
  ## Usage on free tier in Google Colab
108
 
109
- If you don’t have access to larger GPUs but want to try the model out, you can run it in a quantized format in Google Colab. **The quality of the responses might deteriorate significantly.** Follow these steps:
110
 
111
  ### Step 1: Install Dependencies
112
  ```
113
  !pip install -U bitsandbytes
 
 
114
  ```
115
- After installing, **restart the runtime**.
116
 
117
- ### Step 2: Run the model
118
 
119
- ```
120
 
121
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
122
  import torch
@@ -138,7 +144,10 @@ generation_pipeline = pipeline(
138
  tokenizer=tokenizer,
139
  device_map="auto",
140
  )
141
-
 
 
 
142
  papyrus_edition = """
143
  ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
144
  ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
 
21
 
22
  ## Usage
23
 
24
+ To run the model on a GPU with larger memory, following these steps:
25
+
26
+ ### 1. Download and load the model
27
 
28
  ```python
29
  import json
30
  from transformers import pipeline, AutoTokenizer, LlamaForCausalLM
31
  import torch
32
 
33
+ model_id = "Ericu950/Papy_1_Llama-3.1-8B-Instruct_date"
34
+
35
+ model = LlamaForCausalLM.from_pretrained(
36
+ model_id,
37
+ device_map="auto",
38
+ )
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
41
+
42
+ generation_pipeline = pipeline(
43
+ "text-generation",
44
+ model=model,
45
+ tokenizer=tokenizer,
46
+ device_map="auto",
47
+ )
48
+ ```
49
+
50
+ ### 2. Run inference on a papyrus fragment of your choice
51
+ ```python
52
+ # This is a rough transcription of Pap.Ups. 106
53
  papyrus_edition = """
54
  ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
55
  ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
 
71
  ησσον· δ -----ιων ομολογιαν συνεχωρησεν·
72
  """
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  system_prompt = "Date this papyrus fragment to an exact year!"
75
 
76
  input_messages = [
 
86
  outputs = generation_pipeline(
87
  input_messages,
88
  max_new_tokens=4,
89
+ num_beams=45, # Set this as high as your memory will allow!
90
  num_return_sequences=1,
91
  early_stopping=True,
92
  )
 
104
  for i, content in enumerate(beam_contents, start=1):
105
  print(f"Suggestion {i}: {content}")
106
  ```
107
+ ### Expected Output:
 
108
  ```
109
  Year: 71 or 72 AD
110
  Suggestion 1: 71
111
  ```
112
  ## Usage on free tier in Google Colab
113
 
114
+ If you don’t have access to a larger GPU but want to try the model out, you can run it in a quantized format in Google Colab. **The quality of the responses might deteriorate significantly.** Follow these steps:
115
 
116
  ### Step 1: Install Dependencies
117
  ```
118
  !pip install -U bitsandbytes
119
+ import os
120
+ os._exit(00)
121
  ```
 
122
 
123
+ ### Step 2: Download and quantize the model
124
 
125
+ ```python
126
 
127
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
128
  import torch
 
144
  tokenizer=tokenizer,
145
  device_map="auto",
146
  )
147
+ ```
148
+ ### Step 3: Run inference on a papyrus fragment of your choice
149
+ ```
150
+ # This is a rough transcription of Pap.Ups. 106
151
  papyrus_edition = """
152
  ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
153
  ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι