--- license: apache-2.0 datasets: - Ericu950/Papyri_1 base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers tags: - papyrology - epigraphy - philology --- # Papy_1_Llama-3.1-8B-Instruct_date This is a fine-tuned version of the Llama-3.1-8B-Instruct model, specialized in assigning a date to Greek documentary papyri. On a test set of 1,856 unseen papyri its predictions were, on average, 21.7 years away from the actual date spans. ## Dataset This model was finetuned on the Ericu950/Papyri_1 dataset, which consists of Greek documentary papyri editions and their corresponding dates and geographical attributions sourced from the amazing Papyri.info. ## Usage To run the model on a GPU with large memory capacity, follow these steps: ### 1. Download and load the model ```python import json from transformers import pipeline, AutoTokenizer, LlamaForCausalLM import torch model_id = "Ericu950/Papy_1_Llama-3.1-8B-Instruct_date" model = LlamaForCausalLM.from_pretrained( model_id, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_id) generation_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", ) ``` ### 2. Run inference on a papyrus fragment of your choice ```python # This is a rough transcription of Pap.Ups. 106 papyrus_edition = """ ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------ ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι εκ τησ γενομενησ και μετηλλαχυιασ αυτου γυναικοσ ------------------------- απο τησ αυτησ πολεωσ εν αγυιαι συγχωρειν ειναι ---------------------------------- --------------------σ αυτωι εξ ησ συνεστιν ------------------------------------ ----τησ αυτησ γενεασ την υπαρχουσαν αυτωι οικιαν ------------ ------------------ ---------καὶ αιθριον και αυλη απερ ο υιοσ διοκοροσ -------------------------- --------εγραψεν του δ αυτου διοσκορου ειναι ------------------------------------ ---------- και προ κατενγεγυηται τα δικαια -------------------------------------- νησ κατα τουσ τησ χωρασ νομουσ· εαν δε μη --------------------------------------- υπ αυτου τηι του διοσκορου σημαινομενηι -----------------------------------ενοικισμωι του ημισουσ μερουσ τησ προκειμενησ οικιασ --------------------------------- διοσκοροσ την τουτων αποχην ---------------------------------------------μηδ υπεναντιον τουτοισ επιτελειν μηδε ------------------------------------------------ ανασκευηι κατ αυτησ τιθεσθαι ομολογιαν μηδε ----------------------------------- επιτελεσαι η χωρισ του κυρια ειναι τα διομολογημενα παραβαινειν, εκτεινειν δε τον παραβησομενον τωι υιωι διοσκορωι η τοισ παρ αυτου καθ εκαστην εφοδον το τε βλαβοσ και επιτιμον αργυριου δραχμασ 0 και εισ το δημοσιον τασ ισασ και μηθεν ησσον· δ -----ιων ομολογιαν συνεχωρησεν· """ system_prompt = "Date this papyrus fragment to an exact year!" input_messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": papyrus_edition}, ] terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = generation_pipeline( input_messages, max_new_tokens=13, num_beams=45, # Set this as high as your memory will allow! num_return_sequences=3, early_stopping=True, ) beam_contents = [] for output in outputs: generated_text = output.get('generated_text', []) for item in generated_text: if item.get('role') == 'assistant': beam_contents.append(item.get('content')) real_response = "Oxyrynchos" print(f"Place of origin: {real_response}") for i, content in enumerate(beam_contents, start=1): print(f"Suggestion {i}: {content}") ``` ### Expected Output: ``` Place of origin: Oxyrynchos Suggestion 1: Oxyrhynchos Suggestion 2: Antinoopolis Suggestion 3: Alexandria ``` ## Usage on free tier in Google Colab If you don’t have access to a larger GPU but want to try the model out, you can run it in a quantized format in Google Colab. **The quality of the responses might deteriorate significantly.** Follow these steps: ### Step 1: Connect to free GPU 1. Click Connect arrow_drop_down near the top right of the notebook. 2. Select Change runtime type. 3. In the modal window, select T4 GPU as your hardware accelerator. 4. Click Save. 5. Click the Connect button to connect to your runtime. After some time, the button will present a green checkmark, along with RAM and disk usage graphs. This indicates that a server has successfully been created with your required hardware. ### Step 2: Install Dependencies ```python !pip install -U bitsandbytes import os os._exit(00) ``` ### Step 3: Download and quantize the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline import torch quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained("Ericu950/Papy_1_Llama-3.1-8B-Instruct_place", device_map = "auto", quantization_config = quant_config) tokenizer = AutoTokenizer.from_pretrained("Ericu950/Papy_1_Llama-3.1-8B-Instruct_place") generation_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", ) ``` ### Step 4: Run inference on a papyrus fragment of your choice ```python # This is a rough transcription of Pap.Ups. 106 papyrus_edition = """ ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------ ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι εκ τησ γενομενησ και μετηλλαχυιασ αυτου γυναικοσ ------------------------- απο τησ αυτησ πολεωσ εν αγυιαι συγχωρειν ειναι ---------------------------------- --------------------σ αυτωι εξ ησ συνεστιν ------------------------------------ ----τησ αυτησ γενεασ την υπαρχουσαν αυτωι οικιαν ------------ ------------------ ---------καὶ αιθριον και αυλη απερ ο υιοσ διοκοροσ -------------------------- --------εγραψεν του δ αυτου διοσκορου ειναι ------------------------------------ ---------- και προ κατενγεγυηται τα δικαια -------------------------------------- νησ κατα τουσ τησ χωρασ νομουσ· εαν δε μη --------------------------------------- υπ αυτου τηι του διοσκορου σημαινομενηι -----------------------------------ενοικισμωι του ημισουσ μερουσ τησ προκειμενησ οικιασ --------------------------------- διοσκοροσ την τουτων αποχην ---------------------------------------------μηδ υπεναντιον τουτοισ επιτελειν μηδε ------------------------------------------------ ανασκευηι κατ αυτησ τιθεσθαι ομολογιαν μηδε ----------------------------------- επιτελεσαι η χωρισ του κυρια ειναι τα διομολογημενα παραβαινειν, εκτεινειν δε τον παραβησομενον τωι υιωι διοσκορωι η τοισ παρ αυτου καθ εκαστην εφοδον το τε βλαβοσ και επιτιμον αργυριου δραχμασ 0 και εισ το δημοσιον τασ ισασ και μηθεν ησσον· δ -----ιων ομολογιαν συνεχωρησεν·""" system_prompt = "Assign this papyrus fragment to an exact place!" input_messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": papyrus_edition}, ] outputs = generation_pipeline( input_messages, max_new_tokens=13, num_beams=10, num_return_sequences=3, early_stopping=True, ) beam_contents = [] for output in outputs: generated_text = output.get('generated_text', []) for item in generated_text: if item.get('role') == 'assistant': beam_contents.append(item.get('content')) real_response = "Oxyrynchos" print(f"Place of origin: {real_response}") for i, content in enumerate(beam_contents, start=1): print(f"Suggestion {i}: {content}") ``` ### Expected Output: ``` Place of origin: Oxyrynchos Suggestion 1: Oxyrhynchos Suggestion 2: Antinoopolis Suggestion 3: Alexandria ```