Erin commited on
Commit
5b73224
1 Parent(s): 42df499

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +1152 -0
README.md ADDED
@@ -0,0 +1,1152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pipeline_tag: sentence-similarity
2
+ tags:
3
+ - sentence-transformers
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - mteb
7
+ model-index:
8
+ - name: mist-zh
9
+ results:
10
+ - task:
11
+ type:STS
12
+ dataset:
13
+ type:C-MTEB/AFQMC
14
+ name: MTEB AFQMC
15
+ config: default
16
+ split:validation
17
+ revision:None
18
+ metrics:
19
+ - type: cos_sim_pearson
20
+ value: 0.44734816122831544
21
+ - type: cos_sim_spearman
22
+ value: 0.46970061233318733
23
+ - type: euclidean_pearson
24
+ value: 0.45380620360050605
25
+ - type: euclidean_spearman
26
+ value: 0.46970061233318733
27
+ - type: manhattan_pearson
28
+ value: 0.45251004629975566
29
+ - type: manhattan_spearman
30
+ value: 0.4685418008817015
31
+ - task:
32
+ type:Classification
33
+ dataset:
34
+ type:mteb/amazon_reviews_multi
35
+ name: MTEB AmazonReviewsClassification
36
+ config: default
37
+ split:test
38
+ revision:1399c76144fd37290681b995c656ef9b2e06e26d
39
+ metrics:
40
+ - type: zh_accuracy
41
+ value: 0.38855999999999996
42
+ - type: zh_accuracy_stderr
43
+ value: 0.025344001262626235
44
+ - type: zh_f1
45
+ value: 0.36961374807419534
46
+ - type: zh_f1_stderr
47
+ value: 0.021293704875037154
48
+ - type: zh_main_score
49
+ value: 0.38855999999999996
50
+ - task:
51
+ type:STS
52
+ dataset:
53
+ type:C-MTEB/ATEC
54
+ name: MTEB ATEC
55
+ config: default
56
+ split:test
57
+ revision:None
58
+ metrics:
59
+ - type: cos_sim_pearson
60
+ value: 0.4923835317471939
61
+ - type: cos_sim_spearman
62
+ value: 0.5129611473119322
63
+ - type: euclidean_pearson
64
+ value: 0.5341533188991713
65
+ - type: euclidean_spearman
66
+ value: 0.5129611360495954
67
+ - type: manhattan_pearson
68
+ value: 0.5342662771302782
69
+ - type: manhattan_spearman
70
+ value: 0.5129682402789285
71
+ - task:
72
+ type:STS
73
+ dataset:
74
+ type:C-MTEB/BQ
75
+ name: MTEB BQ
76
+ config: default
77
+ split:test
78
+ revision:None
79
+ metrics:
80
+ - type: cos_sim_pearson
81
+ value: 0.6179575529204537
82
+ - type: cos_sim_spearman
83
+ value: 0.6496308773217001
84
+ - type: euclidean_pearson
85
+ value: 0.6338747223113914
86
+ - type: euclidean_spearman
87
+ value: 0.6496309119412785
88
+ - type: manhattan_pearson
89
+ value: 0.6336833986897711
90
+ - type: manhattan_spearman
91
+ value: 0.6495000035386368
92
+ - task:
93
+ type:Clustering
94
+ dataset:
95
+ type:C-MTEB/CLSClusteringP2P
96
+ name: MTEB CLSClusteringP2P
97
+ config: default
98
+ split:test
99
+ revision:None
100
+ metrics:
101
+ - type: v_measure
102
+ value: 0.4026570556670306
103
+ - type: v_measure_std
104
+ value: 0.017061921549952314
105
+ - task:
106
+ type:Clustering
107
+ dataset:
108
+ type:C-MTEB/CLSClusteringS2S
109
+ name: MTEB CLSClusteringS2S
110
+ config: default
111
+ split:test
112
+ revision:None
113
+ metrics:
114
+ - type: v_measure
115
+ value: 0.3768621168788469
116
+ - type: v_measure_std
117
+ value: 0.015506559067836777
118
+ - task:
119
+ type:Retrieval
120
+ dataset:
121
+ type:C-MTEB/CmedqaRetrieval
122
+ name: MTEB CmedqaRetrieval
123
+ config: default
124
+ split:dev
125
+ revision:None
126
+ metrics:
127
+ - type: map_at_1
128
+ value: 0.24044
129
+ - type: map_at_10
130
+ value: 0.35311
131
+ - type: map_at_100
132
+ value: 0.37125
133
+ - type: map_at_1000
134
+ value: 0.3726
135
+ - type: map_at_3
136
+ value: 0.31342
137
+ - type: map_at_5
138
+ value: 0.33613
139
+ - type: mrr_at_1
140
+ value: 0.36909
141
+ - type: mrr_at_10
142
+ value: 0.44373
143
+ - type: mrr_at_100
144
+ value: 0.45367
145
+ - type: mrr_at_1000
146
+ value: 0.45422
147
+ - type: mrr_at_3
148
+ value: 0.41927
149
+ - type: mrr_at_5
150
+ value: 0.43292
151
+ - type: ndcg_at_1
152
+ value: 0.36909
153
+ - type: ndcg_at_10
154
+ value: 0.41666
155
+ - type: ndcg_at_100
156
+ value: 0.48915
157
+ - type: ndcg_at_1000
158
+ value: 0.51348
159
+ - type: ndcg_at_3
160
+ value: 0.36592
161
+ - type: ndcg_at_5
162
+ value: 0.38787
163
+ - type: precision_at_1
164
+ value: 0.36909
165
+ - type: precision_at_10
166
+ value: 0.09327
167
+ - type: precision_at_100
168
+ value: 0.01523
169
+ - type: precision_at_1000
170
+ value: 0.00183
171
+ - type: precision_at_3
172
+ value: 0.20672
173
+ - type: precision_at_5
174
+ value: 0.15179
175
+ - type: recall_at_1
176
+ value: 0.24044
177
+ - type: recall_at_10
178
+ value: 0.5137
179
+ - type: recall_at_100
180
+ value: 0.81569
181
+ - type: recall_at_1000
182
+ value: 0.98053
183
+ - type: recall_at_3
184
+ value: 0.3612
185
+ - type: recall_at_5
186
+ value: 0.42829
187
+ - task:
188
+ type:Reranking
189
+ dataset:
190
+ type:C-MTEB/CMedQAv1-reranking
191
+ name: MTEB CMedQAv1
192
+ config: default
193
+ split:test
194
+ revision:None
195
+ metrics:
196
+ - type: map
197
+ value: 0.8440938491415716
198
+ - type: mrr
199
+ value: 0.8686722222222222
200
+ - task:
201
+ type:Reranking
202
+ dataset:
203
+ type:C-MTEB/CMedQAv2-reranking
204
+ name: MTEB CMedQAv2
205
+ config: default
206
+ split:test
207
+ revision:None
208
+ metrics:
209
+ - type: map
210
+ value: 0.852507433210034
211
+ - type: mrr
212
+ value: 0.8758742063492063
213
+ - task:
214
+ type:PairClassification
215
+ dataset:
216
+ type:C-MTEB/CMNLI
217
+ name: MTEB Cmnli
218
+ config: default
219
+ split:validation
220
+ revision:None
221
+ metrics:
222
+ - type: cos_sim_accuracy
223
+ value: 0.7592303066746843
224
+ - type: cos_sim_accuracy_threshold
225
+ value: 0.7603684663772583
226
+ - type: cos_sim_ap
227
+ value: 0.8439741959629594
228
+ - type: cos_sim_f1
229
+ value: 0.7728710064333224
230
+ - type: cos_sim_f1_threshold
231
+ value: 0.7281966805458069
232
+ - type: cos_sim_precision
233
+ value: 0.7241520228851656
234
+ - type: cos_sim_recall
235
+ value: 0.828618190320318
236
+ - type: dot_accuracy
237
+ value: 0.7592303066746843
238
+ - type: dot_accuracy_threshold
239
+ value: 0.7603684663772583
240
+ - type: dot_ap
241
+ value: 0.8439592659189602
242
+ - type: dot_f1
243
+ value: 0.7728710064333224
244
+ - type: dot_f1_threshold
245
+ value: 0.7281967401504517
246
+ - type: dot_precision
247
+ value: 0.7241520228851656
248
+ - type: dot_recall
249
+ value: 0.828618190320318
250
+ - type: euclidean_accuracy
251
+ value: 0.7592303066746843
252
+ - type: euclidean_accuracy_threshold
253
+ value: 0.6922882795333862
254
+ - type: euclidean_ap
255
+ value: 0.8439741904478117
256
+ - type: euclidean_f1
257
+ value: 0.7728710064333224
258
+ - type: euclidean_f1_threshold
259
+ value: 0.7372968196868896
260
+ - type: euclidean_precision
261
+ value: 0.7241520228851656
262
+ - type: euclidean_recall
263
+ value: 0.828618190320318
264
+ - type: manhattan_accuracy
265
+ value: 0.7583884546001203
266
+ - type: manhattan_accuracy_threshold
267
+ value: 15.160146713256836
268
+ - type: manhattan_ap
269
+ value: 0.8439482592167423
270
+ - type: manhattan_f1
271
+ value: 0.7724197186123941
272
+ - type: manhattan_f1_threshold
273
+ value: 16.451358795166016
274
+ - type: manhattan_precision
275
+ value: 0.7143424711958681
276
+ - type: manhattan_recall
277
+ value: 0.8407762450315642
278
+ - type: max_accuracy
279
+ value: 0.7592303066746843
280
+ - type: max_ap
281
+ value: 0.8439741959629594
282
+ - type: max_f1
283
+ value: 0.7728710064333224
284
+ - task:
285
+ type:Retrieval
286
+ dataset:
287
+ type:C-MTEB/CovidRetrieval
288
+ name: MTEB CovidRetrieval
289
+ config: default
290
+ split:dev
291
+ revision:None
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 0.6765
295
+ - type: map_at_10
296
+ value: 0.75672
297
+ - type: map_at_100
298
+ value: 0.76005
299
+ - type: map_at_1000
300
+ value: 0.76007
301
+ - type: map_at_3
302
+ value: 0.73867
303
+ - type: map_at_5
304
+ value: 0.74949
305
+ - type: mrr_at_1
306
+ value: 0.67756
307
+ - type: mrr_at_10
308
+ value: 0.7564
309
+ - type: mrr_at_100
310
+ value: 0.75973
311
+ - type: mrr_at_1000
312
+ value: 0.75975
313
+ - type: mrr_at_3
314
+ value: 0.73867
315
+ - type: mrr_at_5
316
+ value: 0.74984
317
+ - type: ndcg_at_1
318
+ value: 0.67861
319
+ - type: ndcg_at_10
320
+ value: 0.79393
321
+ - type: ndcg_at_100
322
+ value: 0.81044
323
+ - type: ndcg_at_1000
324
+ value: 0.81153
325
+ - type: ndcg_at_3
326
+ value: 0.75767
327
+ - type: ndcg_at_5
328
+ value: 0.77714
329
+ - type: precision_at_1
330
+ value: 0.67861
331
+ - type: precision_at_10
332
+ value: 0.09199
333
+ - type: precision_at_100
334
+ value: 0.00998
335
+ - type: precision_at_1000
336
+ value: 0.00101
337
+ - type: precision_at_3
338
+ value: 0.27222
339
+ - type: precision_at_5
340
+ value: 0.17302
341
+ - type: recall_at_1
342
+ value: 0.6765
343
+ - type: recall_at_10
344
+ value: 0.90938
345
+ - type: recall_at_100
346
+ value: 0.98736
347
+ - type: recall_at_1000
348
+ value: 0.99684
349
+ - type: recall_at_3
350
+ value: 0.81138
351
+ - type: recall_at_5
352
+ value: 0.85827
353
+ - task:
354
+ type:Retrieval
355
+ dataset:
356
+ type: C-MTEB/DuRetrieval
357
+ name: MTEB DuRetrieval
358
+ config: default
359
+ split:dev
360
+ revision:None
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 0.25407
364
+ - type: map_at_10
365
+ value: 0.79001
366
+ - type: map_at_100
367
+ value: 0.81983
368
+ - type: map_at_1000
369
+ value: 0.82021
370
+ - type: map_at_3
371
+ value: 0.54256
372
+ - type: map_at_5
373
+ value: 0.68918
374
+ - type: mrr_at_1
375
+ value: 0.8915
376
+ - type: mrr_at_10
377
+ value: 0.92548
378
+ - type: mrr_at_100
379
+ value: 0.92614
380
+ - type: mrr_at_1000
381
+ value: 0.92616
382
+ - type: mrr_at_3
383
+ value: 0.92175
384
+ - type: mrr_at_5
385
+ value: 0.92432
386
+ - type: ndcg_at_1
387
+ value: 0.8915
388
+ - type: ndcg_at_10
389
+ value: 0.86588
390
+ - type: ndcg_at_100
391
+ value: 0.89487
392
+ - type: ndcg_at_1000
393
+ value: 0.89841
394
+ - type: ndcg_at_3
395
+ value: 0.8501
396
+ - type: ndcg_at_5
397
+ value: 0.84301
398
+ - type: precision_at_1
399
+ value: 0.8915
400
+ - type: precision_at_10
401
+ value: 0.4171
402
+ - type: precision_at_100
403
+ value: 0.04807
404
+ - type: precision_at_1000
405
+ value: 0.00489
406
+ - type: precision_at_3
407
+ value: 0.76417
408
+ - type: precision_at_5
409
+ value: 0.6495
410
+ - type: recall_at_1
411
+ value: 0.25407
412
+ - type: recall_at_10
413
+ value: 0.88221
414
+ - type: recall_at_100
415
+ value: 0.97527
416
+ - type: recall_at_1000
417
+ value: 0.99396
418
+ - type: recall_at_3
419
+ value: 0.56751
420
+ - type: recall_at_5
421
+ value: 0.74191
422
+ - task:
423
+ type:Retrieval
424
+ dataset:
425
+ type:C-MTEB/EcomRetrieval
426
+ name: MTEB EcomRetrieval
427
+ config: default
428
+ split:dev
429
+ revision:None
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 0.476
433
+ - type: map_at_10
434
+ value: 0.5715
435
+ - type: map_at_100
436
+ value: 0.57789
437
+ - type: map_at_1000
438
+ value: 0.57808
439
+ - type: map_at_3
440
+ value: 0.54467
441
+ - type: map_at_5
442
+ value: 0.56017
443
+ - type: mrr_at_1
444
+ value: 0.476
445
+ - type: mrr_at_10
446
+ value: 0.5715
447
+ - type: mrr_at_100
448
+ value: 0.57789
449
+ - type: mrr_at_1000
450
+ value: 0.57808
451
+ - type: mrr_at_3
452
+ value: 0.54467
453
+ - type: mrr_at_5
454
+ value: 0.56017
455
+ - type: ndcg_at_1
456
+ value: 0.476
457
+ - type: ndcg_at_10
458
+ value: 0.62304
459
+ - type: ndcg_at_100
460
+ value: 0.65329
461
+ - type: ndcg_at_1000
462
+ value: 0.65837
463
+ - type: ndcg_at_3
464
+ value: 0.56757
465
+ - type: ndcg_at_5
466
+ value: 0.59575
467
+ - type: precision_at_1
468
+ value: 0.476
469
+ - type: precision_at_10
470
+ value: 0.0787
471
+ - type: precision_at_100
472
+ value: 0.00926
473
+ - type: precision_at_1000
474
+ value: 0.00097
475
+ - type: precision_at_3
476
+ value: 0.21133
477
+ - type: precision_at_5
478
+ value: 0.1406
479
+ - type: recall_at_1
480
+ value: 0.476
481
+ - type: recall_at_10
482
+ value: 0.787
483
+ - type: recall_at_100
484
+ value: 0.926
485
+ - type: recall_at_1000
486
+ value: 0.966
487
+ - type: recall_at_3
488
+ value: 0.634
489
+ - type: recall_at_5
490
+ value: 0.703
491
+ - task:
492
+ type:Classification
493
+ dataset:
494
+ type:C-MTEB/IFlyTek-classification
495
+ name: MTEB IFlyTek
496
+ config: default
497
+ split:validation
498
+ revision:None
499
+ metrics:
500
+ - type: accuracy
501
+ value: 0.4828010773374375
502
+ - type: accuracy_stderr
503
+ value: 0.005244086198507375
504
+ - type: f1
505
+ value: 0.3553699530214492
506
+ - type: f1_stderr
507
+ value: 0.0037929213901079944
508
+ - type: main_score
509
+ value: 0.4828010773374375
510
+ - task:
511
+ type:Classification
512
+ dataset:
513
+ type:C-MTEB/JDReview-classification
514
+ name: MTEB JDReview
515
+ config: default
516
+ split:test
517
+ revision:None
518
+ metrics:
519
+ - type: accuracy
520
+ value: 0.8484052532833021
521
+ - type: accuracy_stderr
522
+ value: 0.015848939648737626
523
+ - type: ap
524
+ value: 0.5235323515091401
525
+ - type: ap_stderr
526
+ value: 0.02150569650954474
527
+ - type: f1
528
+ value: 0.7950069160202494
529
+ - type: f1_stderr
530
+ value: 0.01499969036259696
531
+ - type: main_score
532
+ value: 0.8484052532833021
533
+ - task:
534
+ type:STS
535
+ dataset:
536
+ type:C-MTEB/LCQMC
537
+ name: MTEB LCQMC
538
+ config: default
539
+ split:test
540
+ revision:None
541
+ metrics:
542
+ - type: cos_sim_pearson
543
+ value: 0.6968404288794713
544
+ - type: cos_sim_spearman
545
+ value: 0.7706824442481803
546
+ - type: euclidean_pearson
547
+ value: 0.7547746745802166
548
+ - type: euclidean_spearman
549
+ value: 0.7706825328995878
550
+ - type: manhattan_pearson
551
+ value: 0.7546220581621667
552
+ - type: manhattan_spearman
553
+ value: 0.7705100926919136
554
+ - task:
555
+ type:Classification
556
+ dataset:
557
+ type:mteb/amazon_massive_intent
558
+ name: MTEB MassiveIntentClassification
559
+ config: default
560
+ split:test
561
+ revision:31efe3c427b0bae9c22cbb560b8f15491cc6bed7
562
+ metrics:
563
+ - type: zh-CN_accuracy
564
+ value: 0.6745124411566913
565
+ - type: zh-CN_accuracy_stderr
566
+ value: 0.015989972974792096
567
+ - type: zh-CN_f1
568
+ value: 0.6477175074397455
569
+ - type: zh-CN_f1_stderr
570
+ value: 0.015484061914007355
571
+ - type: zh-CN_main_score
572
+ value: 0.6745124411566913
573
+ - task:
574
+ type:Classification
575
+ dataset:
576
+ type:mteb/amazon_massive_scenario
577
+ name: MTEB MassiveScenarioClassification
578
+ config: default
579
+ split:test
580
+ revision:7d571f92784cd94a019292a1f45445077d0ef634
581
+ metrics:
582
+ - type: zh-CN_accuracy
583
+ value: 0.7308002689979824
584
+ - type: zh-CN_accuracy_stderr
585
+ value: 0.015224400610167006
586
+ - type: zh-CN_f1
587
+ value: 0.7265358173635958
588
+ - type: zh-CN_f1_stderr
589
+ value: 0.014453983681998765
590
+ - type: zh-CN_main_score
591
+ value: 0.7308002689979824
592
+ - task:
593
+ type:Retrieval
594
+ dataset:
595
+ type:C-MTEB/MedicalRetrieval
596
+ name: MTEB MedicalRetrieval
597
+ config: default
598
+ split:dev
599
+ revision:None
600
+ metrics:
601
+ - type: map_at_1
602
+ value: 0.487
603
+ - type: map_at_10
604
+ value: 0.54871
605
+ - type: map_at_100
606
+ value: 0.55381
607
+ - type: map_at_1000
608
+ value: 0.55436
609
+ - type: map_at_3
610
+ value: 0.53367
611
+ - type: map_at_5
612
+ value: 0.54257
613
+ - type: mrr_at_1
614
+ value: 0.487
615
+ - type: mrr_at_10
616
+ value: 0.54871
617
+ - type: mrr_at_100
618
+ value: 0.55381
619
+ - type: mrr_at_1000
620
+ value: 0.55436
621
+ - type: mrr_at_3
622
+ value: 0.53367
623
+ - type: mrr_at_5
624
+ value: 0.54257
625
+ - type: ndcg_at_1
626
+ value: 0.487
627
+ - type: ndcg_at_10
628
+ value: 0.57942
629
+ - type: ndcg_at_100
630
+ value: 0.6075
631
+ - type: ndcg_at_1000
632
+ value: 0.62401
633
+ - type: ndcg_at_3
634
+ value: 0.54867
635
+ - type: ndcg_at_5
636
+ value: 0.56493
637
+ - type: precision_at_1
638
+ value: 0.487
639
+ - type: precision_at_10
640
+ value: 0.0676
641
+ - type: precision_at_100
642
+ value: 0.00815
643
+ - type: precision_at_1000
644
+ value: 0.00095
645
+ - type: precision_at_3
646
+ value: 0.19733
647
+ - type: precision_at_5
648
+ value: 0.1264
649
+ - type: recall_at_1
650
+ value: 0.487
651
+ - type: recall_at_10
652
+ value: 0.676
653
+ - type: recall_at_100
654
+ value: 0.815
655
+ - type: recall_at_1000
656
+ value: 0.949
657
+ - type: recall_at_3
658
+ value: 0.592
659
+ - type: recall_at_5
660
+ value: 0.632
661
+ - task:
662
+ type:Reranking
663
+ dataset:
664
+ type:C-MTEB/Mmarco-reranking
665
+ name: MTEB MmarcoReranking
666
+ config: default
667
+ split:dev
668
+ revision:None
669
+ metrics:
670
+ - type: map
671
+ value: 0.2809825725416088
672
+ - type: mrr
673
+ value: 0.2695912698412698
674
+ - task:
675
+ type:Retrieval
676
+ dataset:
677
+ type:C-MTEB/MMarcoRetrieval
678
+ name: MTEB MMarcoRetrieval
679
+ config: default
680
+ split:dev
681
+ revision:None
682
+ metrics:
683
+ - type: map_at_1
684
+ value: 0.65368
685
+ - type: map_at_10
686
+ value: 0.74294
687
+ - type: map_at_100
688
+ value: 0.74653
689
+ - type: map_at_1000
690
+ value: 0.74664
691
+ - type: map_at_3
692
+ value: 0.72416
693
+ - type: map_at_5
694
+ value: 0.73658
695
+ - type: mrr_at_1
696
+ value: 0.67507
697
+ - type: mrr_at_10
698
+ value: 0.74853
699
+ - type: mrr_at_100
700
+ value: 0.75174
701
+ - type: mrr_at_1000
702
+ value: 0.75184
703
+ - type: mrr_at_3
704
+ value: 0.73235
705
+ - type: mrr_at_5
706
+ value: 0.74298
707
+ - type: ndcg_at_1
708
+ value: 0.67507
709
+ - type: ndcg_at_10
710
+ value: 0.77948
711
+ - type: ndcg_at_100
712
+ value: 0.79555
713
+ - type: ndcg_at_1000
714
+ value: 0.79864
715
+ - type: ndcg_at_3
716
+ value: 0.74434
717
+ - type: ndcg_at_5
718
+ value: 0.76504
719
+ - type: precision_at_1
720
+ value: 0.67507
721
+ - type: precision_at_10
722
+ value: 0.09423
723
+ - type: precision_at_100
724
+ value: 0.01022
725
+ - type: precision_at_1000
726
+ value: 0.00105
727
+ - type: precision_at_3
728
+ value: 0.27975
729
+ - type: precision_at_5
730
+ value: 0.17891
731
+ - type: recall_at_1
732
+ value: 0.65368
733
+ - type: recall_at_10
734
+ value: 0.88633
735
+ - type: recall_at_100
736
+ value: 0.95889
737
+ - type: recall_at_1000
738
+ value: 0.98346
739
+ - type: recall_at_3
740
+ value: 0.79404
741
+ - type: recall_at_5
742
+ value: 0.84292
743
+ - task:
744
+ type:Classification
745
+ dataset:
746
+ type:C-MTEB/MultilingualSentiment-classification
747
+ name: MTEB MultilingualSentiment
748
+ config: default
749
+ split:validation
750
+ revision:None
751
+ metrics:
752
+ - type: accuracy
753
+ value: 0.7127000000000001
754
+ - type: accuracy_stderr
755
+ value: 0.009532925399197596
756
+ - type: f1
757
+ value: 0.7046516219039894
758
+ - type: f1_stderr
759
+ value: 0.01407386657805127
760
+ - type: main_score
761
+ value: 0.7127000000000001
762
+ - task:
763
+ type:PairClassification
764
+ dataset:
765
+ type:C-MTEB/OCNLI
766
+ name: MTEB Ocnli
767
+ config: default
768
+ split:validation
769
+ revision:None
770
+ metrics:
771
+ - type: cos_sim_accuracy
772
+ value: 0.6989713048186248
773
+ - type: cos_sim_accuracy_threshold
774
+ value: 0.7673404216766357
775
+ - type: cos_sim_ap
776
+ value: 0.7475296949416844
777
+ - type: cos_sim_f1
778
+ value: 0.730820399113082
779
+ - type: cos_sim_f1_threshold
780
+ value: 0.7212538719177246
781
+ - type: cos_sim_precision
782
+ value: 0.6299694189602446
783
+ - type: cos_sim_recall
784
+ value: 0.870116156282999
785
+ - type: dot_accuracy
786
+ value: 0.6989713048186248
787
+ - type: dot_accuracy_threshold
788
+ value: 0.7673404216766357
789
+ - type: dot_ap
790
+ value: 0.7475289228002875
791
+ - type: dot_f1
792
+ value: 0.730820399113082
793
+ - type: dot_f1_threshold
794
+ value: 0.7212539315223694
795
+ - type: dot_precision
796
+ value: 0.6299694189602446
797
+ - type: dot_recall
798
+ value: 0.870116156282999
799
+ - type: euclidean_accuracy
800
+ value: 0.6989713048186248
801
+ - type: euclidean_accuracy_threshold
802
+ value: 0.6821430325508118
803
+ - type: euclidean_ap
804
+ value: 0.7475289228002875
805
+ - type: euclidean_f1
806
+ value: 0.730820399113082
807
+ - type: euclidean_f1_threshold
808
+ value: 0.7466539740562439
809
+ - type: euclidean_precision
810
+ value: 0.6299694189602446
811
+ - type: euclidean_recall
812
+ value: 0.870116156282999
813
+ - type: manhattan_accuracy
814
+ value: 0.699512723335138
815
+ - type: manhattan_accuracy_threshold
816
+ value: 15.069363594055176
817
+ - type: manhattan_ap
818
+ value: 0.7463572749955489
819
+ - type: manhattan_f1
820
+ value: 0.7280663465735486
821
+ - type: manhattan_f1_threshold
822
+ value: 16.66558074951172
823
+ - type: manhattan_precision
824
+ value: 0.6205357142857143
825
+ - type: manhattan_recall
826
+ value: 0.880675818373812
827
+ - type: max_accuracy
828
+ value: 0.699512723335138
829
+ - type: max_ap
830
+ value: 0.7475296949416844
831
+ - type: max_f1
832
+ value: 0.730820399113082
833
+ - task:
834
+ type:Classification
835
+ dataset:
836
+ type:C-MTEB/OnlineShopping-classification
837
+ name: MTEB OnlineShopping
838
+ config: default
839
+ split:test
840
+ revision:None
841
+ metrics:
842
+ - type: accuracy
843
+ value: 0.9138
844
+ - type: accuracy_stderr
845
+ value: 0.012456323695216027
846
+ - type: ap
847
+ value: 0.8914371766660247
848
+ - type: ap_stderr
849
+ value: 0.01735000706460752
850
+ - type: f1
851
+ value: 0.9136682962995261
852
+ - type: f1_stderr
853
+ value: 0.012499748296615935
854
+ - type: main_score
855
+ value: 0.9138
856
+ - task:
857
+ type:STS
858
+ dataset:
859
+ type:C-MTEB/PAWSX
860
+ name: MTEB PAWSX
861
+ config: default
862
+ split:test
863
+ revision:None
864
+ metrics:
865
+ - type: cos_sim_pearson
866
+ value: 0.23621683997579607
867
+ - type: cos_sim_spearman
868
+ value: 0.2946714129804792
869
+ - type: euclidean_pearson
870
+ value: 0.29841725912733486
871
+ - type: euclidean_spearman
872
+ value: 0.2946695199370699
873
+ - type: manhattan_pearson
874
+ value: 0.29853598937043624
875
+ - type: manhattan_spearman
876
+ value: 0.2942340511723847
877
+ - task:
878
+ type:STS
879
+ dataset:
880
+ type:C-MTEB/QBQTC
881
+ name: MTEB QBQTC
882
+ config: default
883
+ split:test
884
+ revision:None
885
+ metrics:
886
+ - type: cos_sim_pearson
887
+ value: 0.3486196986379606
888
+ - type: cos_sim_spearman
889
+ value: 0.37316873994339983
890
+ - type: euclidean_pearson
891
+ value: 0.3552672274329054
892
+ - type: euclidean_spearman
893
+ value: 0.3731679950751101
894
+ - type: manhattan_pearson
895
+ value: 0.35558794378442254
896
+ - type: manhattan_spearman
897
+ value: 0.3736943324703548
898
+ - task:
899
+ type:STS
900
+ dataset:
901
+ type:mteb/sts22-crosslingual-sts
902
+ name: MTEB STS22
903
+ config: default
904
+ split:test
905
+ revision:6d1ba47164174a496b7fa5d3569dae26a6813b80
906
+ metrics:
907
+ - type: zh_cos_sim
908
+ value: {'pearson': 0.687924534800626, 'spearman': 0.6945014686127369}
909
+ - type: zh_euclidean
910
+ value: {'pearson': 0.6912500964503516, 'spearman': 0.6945014686127369}
911
+ - type: zh_manhattan
912
+ value: {'pearson': 0.7053825064823807, 'spearman': 0.7067595198226869}
913
+ - task:
914
+ type:STS
915
+ dataset:
916
+ type:C-MTEB/STSB
917
+ name: MTEB STSB
918
+ config: default
919
+ split:test
920
+ revision:None
921
+ metrics:
922
+ - type: cos_sim_pearson
923
+ value: 0.7902281275805849
924
+ - type: cos_sim_spearman
925
+ value: 0.7969275718339353
926
+ - type: euclidean_pearson
927
+ value: 0.7939660648560956
928
+ - type: euclidean_spearman
929
+ value: 0.7969291851788453
930
+ - type: manhattan_pearson
931
+ value: 0.793382690172365
932
+ - type: manhattan_spearman
933
+ value: 0.7963605584076028
934
+ - task:
935
+ type:Reranking
936
+ dataset:
937
+ type:C-MTEB/T2Reranking
938
+ name: MTEB T2Reranking
939
+ config: default
940
+ split:dev
941
+ revision:None
942
+ metrics:
943
+ - type: map
944
+ value: 0.6619942712343411
945
+ - type: mrr
946
+ value: 0.7576681067371656
947
+ - task:
948
+ type:Retrieval
949
+ dataset:
950
+ type:C-MTEB/T2Retrieval
951
+ name: MTEB T2Retrieval
952
+ config: default
953
+ split:dev
954
+ revision:None
955
+ metrics:
956
+ - type: map_at_1
957
+ value: 0.26594
958
+ - type: map_at_10
959
+ value: 0.75272
960
+ - type: map_at_100
961
+ value: 0.7896
962
+ - type: map_at_1000
963
+ value: 0.79032
964
+ - type: map_at_3
965
+ value: 0.5276
966
+ - type: map_at_5
967
+ value: 0.64967
968
+ - type: mrr_at_1
969
+ value: 0.88721
970
+ - type: mrr_at_10
971
+ value: 0.9138
972
+ - type: mrr_at_100
973
+ value: 0.91484
974
+ - type: mrr_at_1000
975
+ value: 0.91489
976
+ - type: mrr_at_3
977
+ value: 0.90901
978
+ - type: mrr_at_5
979
+ value: 0.9121
980
+ - type: ndcg_at_1
981
+ value: 0.88721
982
+ - type: ndcg_at_10
983
+ value: 0.83099
984
+ - type: ndcg_at_100
985
+ value: 0.86938
986
+ - type: ndcg_at_1000
987
+ value: 0.87644
988
+ - type: ndcg_at_3
989
+ value: 0.84573
990
+ - type: ndcg_at_5
991
+ value: 0.83131
992
+ - type: precision_at_1
993
+ value: 0.88721
994
+ - type: precision_at_10
995
+ value: 0.41506
996
+ - type: precision_at_100
997
+ value: 0.0499
998
+ - type: precision_at_1000
999
+ value: 0.00515
1000
+ - type: precision_at_3
1001
+ value: 0.74214
1002
+ - type: precision_at_5
1003
+ value: 0.62244
1004
+ - type: recall_at_1
1005
+ value: 0.26594
1006
+ - type: recall_at_10
1007
+ value: 0.82121
1008
+ - type: recall_at_100
1009
+ value: 0.94643
1010
+ - type: recall_at_1000
1011
+ value: 0.98261
1012
+ - type: recall_at_3
1013
+ value: 0.54539
1014
+ - type: recall_at_5
1015
+ value: 0.68573
1016
+ - task:
1017
+ type:Clustering
1018
+ dataset:
1019
+ type:C-MTEB/ThuNewsClusteringP2P
1020
+ name: MTEB ThuNewsClusteringP2P
1021
+ config: default
1022
+ split:test
1023
+ revision:None
1024
+ metrics:
1025
+ - type: v_measure
1026
+ value: 0.6234936773593232
1027
+ - type: v_measure_std
1028
+ value: 0.014872291909155068
1029
+ - task:
1030
+ type:Clustering
1031
+ dataset:
1032
+ type:C-MTEB/ThuNewsClusteringS2S
1033
+ name: MTEB ThuNewsClusteringS2S
1034
+ config: default
1035
+ split:test
1036
+ revision:None
1037
+ metrics:
1038
+ - type: v_measure
1039
+ value: 0.5865057354232379
1040
+ - type: v_measure_std
1041
+ value: 0.014281574028380747
1042
+ - task:
1043
+ type:Classification
1044
+ dataset:
1045
+ type:C-MTEB/TNews-classification
1046
+ name: MTEB TNews
1047
+ config: default
1048
+ split:validation
1049
+ revision:None
1050
+ metrics:
1051
+ - type: accuracy
1052
+ value: 0.51845
1053
+ - type: accuracy_stderr
1054
+ value: 0.006959058844412791
1055
+ - type: f1
1056
+ value: 0.4997529772676145
1057
+ - type: f1_stderr
1058
+ value: 0.007865498715360303
1059
+ - type: main_score
1060
+ value: 0.51845
1061
+ - task:
1062
+ type:Retrieval
1063
+ dataset:
1064
+ type:C-MTEB/VideoRetrieval
1065
+ name: MTEB VideoRetrieval
1066
+ config: default
1067
+ split:dev
1068
+ revision:None
1069
+ metrics:
1070
+ - type: map_at_1
1071
+ value: 0.522
1072
+ - type: map_at_10
1073
+ value: 0.62669
1074
+ - type: map_at_100
1075
+ value: 0.63239
1076
+ - type: map_at_1000
1077
+ value: 0.63253
1078
+ - type: map_at_3
1079
+ value: 0.60267
1080
+ - type: map_at_5
1081
+ value: 0.61772
1082
+ - type: mrr_at_1
1083
+ value: 0.522
1084
+ - type: mrr_at_10
1085
+ value: 0.62669
1086
+ - type: mrr_at_100
1087
+ value: 0.63239
1088
+ - type: mrr_at_1000
1089
+ value: 0.63253
1090
+ - type: mrr_at_3
1091
+ value: 0.60267
1092
+ - type: mrr_at_5
1093
+ value: 0.61772
1094
+ - type: ndcg_at_1
1095
+ value: 0.522
1096
+ - type: ndcg_at_10
1097
+ value: 0.67583
1098
+ - type: ndcg_at_100
1099
+ value: 0.70305
1100
+ - type: ndcg_at_1000
1101
+ value: 0.70652
1102
+ - type: ndcg_at_3
1103
+ value: 0.62776
1104
+ - type: ndcg_at_5
1105
+ value: 0.6547
1106
+ - type: precision_at_1
1107
+ value: 0.522
1108
+ - type: precision_at_10
1109
+ value: 0.0829
1110
+ - type: precision_at_100
1111
+ value: 0.00955
1112
+ - type: precision_at_1000
1113
+ value: 0.00098
1114
+ - type: precision_at_3
1115
+ value: 0.23333
1116
+ - type: precision_at_5
1117
+ value: 0.153
1118
+ - type: recall_at_1
1119
+ value: 0.522
1120
+ - type: recall_at_10
1121
+ value: 0.829
1122
+ - type: recall_at_100
1123
+ value: 0.955
1124
+ - type: recall_at_1000
1125
+ value: 0.982
1126
+ - type: recall_at_3
1127
+ value: 0.7
1128
+ - type: recall_at_5
1129
+ value: 0.765
1130
+ - task:
1131
+ type:Classification
1132
+ dataset:
1133
+ type: C-MTEB/waimai-classification
1134
+ name: MTEB Waimai
1135
+ config: default
1136
+ split:test
1137
+ revision:None
1138
+ metrics:
1139
+ - type: accuracy
1140
+ value: 0.8664999999999999
1141
+ - type: accuracy_stderr
1142
+ value: 0.007697402159170332
1143
+ - type: ap
1144
+ value: 0.6990209999390807
1145
+ - type: ap_stderr
1146
+ value: 0.014543148063974986
1147
+ - type: f1
1148
+ value: 0.849231810656075
1149
+ - type: f1_stderr
1150
+ value: 0.0073258070989864026
1151
+ - type: main_score
1152
+ value: 0.8664999999999999