Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pipeline_tag: sentence-similarity
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
- mteb
|
7 |
+
model-index:
|
8 |
+
- name: mist-zh
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type:STS
|
12 |
+
dataset:
|
13 |
+
type:C-MTEB/AFQMC
|
14 |
+
name: MTEB AFQMC
|
15 |
+
config: default
|
16 |
+
split:validation
|
17 |
+
revision:None
|
18 |
+
metrics:
|
19 |
+
- type: cos_sim_pearson
|
20 |
+
value: 0.44734816122831544
|
21 |
+
- type: cos_sim_spearman
|
22 |
+
value: 0.46970061233318733
|
23 |
+
- type: euclidean_pearson
|
24 |
+
value: 0.45380620360050605
|
25 |
+
- type: euclidean_spearman
|
26 |
+
value: 0.46970061233318733
|
27 |
+
- type: manhattan_pearson
|
28 |
+
value: 0.45251004629975566
|
29 |
+
- type: manhattan_spearman
|
30 |
+
value: 0.4685418008817015
|
31 |
+
- task:
|
32 |
+
type:Classification
|
33 |
+
dataset:
|
34 |
+
type:mteb/amazon_reviews_multi
|
35 |
+
name: MTEB AmazonReviewsClassification
|
36 |
+
config: default
|
37 |
+
split:test
|
38 |
+
revision:1399c76144fd37290681b995c656ef9b2e06e26d
|
39 |
+
metrics:
|
40 |
+
- type: zh_accuracy
|
41 |
+
value: 0.38855999999999996
|
42 |
+
- type: zh_accuracy_stderr
|
43 |
+
value: 0.025344001262626235
|
44 |
+
- type: zh_f1
|
45 |
+
value: 0.36961374807419534
|
46 |
+
- type: zh_f1_stderr
|
47 |
+
value: 0.021293704875037154
|
48 |
+
- type: zh_main_score
|
49 |
+
value: 0.38855999999999996
|
50 |
+
- task:
|
51 |
+
type:STS
|
52 |
+
dataset:
|
53 |
+
type:C-MTEB/ATEC
|
54 |
+
name: MTEB ATEC
|
55 |
+
config: default
|
56 |
+
split:test
|
57 |
+
revision:None
|
58 |
+
metrics:
|
59 |
+
- type: cos_sim_pearson
|
60 |
+
value: 0.4923835317471939
|
61 |
+
- type: cos_sim_spearman
|
62 |
+
value: 0.5129611473119322
|
63 |
+
- type: euclidean_pearson
|
64 |
+
value: 0.5341533188991713
|
65 |
+
- type: euclidean_spearman
|
66 |
+
value: 0.5129611360495954
|
67 |
+
- type: manhattan_pearson
|
68 |
+
value: 0.5342662771302782
|
69 |
+
- type: manhattan_spearman
|
70 |
+
value: 0.5129682402789285
|
71 |
+
- task:
|
72 |
+
type:STS
|
73 |
+
dataset:
|
74 |
+
type:C-MTEB/BQ
|
75 |
+
name: MTEB BQ
|
76 |
+
config: default
|
77 |
+
split:test
|
78 |
+
revision:None
|
79 |
+
metrics:
|
80 |
+
- type: cos_sim_pearson
|
81 |
+
value: 0.6179575529204537
|
82 |
+
- type: cos_sim_spearman
|
83 |
+
value: 0.6496308773217001
|
84 |
+
- type: euclidean_pearson
|
85 |
+
value: 0.6338747223113914
|
86 |
+
- type: euclidean_spearman
|
87 |
+
value: 0.6496309119412785
|
88 |
+
- type: manhattan_pearson
|
89 |
+
value: 0.6336833986897711
|
90 |
+
- type: manhattan_spearman
|
91 |
+
value: 0.6495000035386368
|
92 |
+
- task:
|
93 |
+
type:Clustering
|
94 |
+
dataset:
|
95 |
+
type:C-MTEB/CLSClusteringP2P
|
96 |
+
name: MTEB CLSClusteringP2P
|
97 |
+
config: default
|
98 |
+
split:test
|
99 |
+
revision:None
|
100 |
+
metrics:
|
101 |
+
- type: v_measure
|
102 |
+
value: 0.4026570556670306
|
103 |
+
- type: v_measure_std
|
104 |
+
value: 0.017061921549952314
|
105 |
+
- task:
|
106 |
+
type:Clustering
|
107 |
+
dataset:
|
108 |
+
type:C-MTEB/CLSClusteringS2S
|
109 |
+
name: MTEB CLSClusteringS2S
|
110 |
+
config: default
|
111 |
+
split:test
|
112 |
+
revision:None
|
113 |
+
metrics:
|
114 |
+
- type: v_measure
|
115 |
+
value: 0.3768621168788469
|
116 |
+
- type: v_measure_std
|
117 |
+
value: 0.015506559067836777
|
118 |
+
- task:
|
119 |
+
type:Retrieval
|
120 |
+
dataset:
|
121 |
+
type:C-MTEB/CmedqaRetrieval
|
122 |
+
name: MTEB CmedqaRetrieval
|
123 |
+
config: default
|
124 |
+
split:dev
|
125 |
+
revision:None
|
126 |
+
metrics:
|
127 |
+
- type: map_at_1
|
128 |
+
value: 0.24044
|
129 |
+
- type: map_at_10
|
130 |
+
value: 0.35311
|
131 |
+
- type: map_at_100
|
132 |
+
value: 0.37125
|
133 |
+
- type: map_at_1000
|
134 |
+
value: 0.3726
|
135 |
+
- type: map_at_3
|
136 |
+
value: 0.31342
|
137 |
+
- type: map_at_5
|
138 |
+
value: 0.33613
|
139 |
+
- type: mrr_at_1
|
140 |
+
value: 0.36909
|
141 |
+
- type: mrr_at_10
|
142 |
+
value: 0.44373
|
143 |
+
- type: mrr_at_100
|
144 |
+
value: 0.45367
|
145 |
+
- type: mrr_at_1000
|
146 |
+
value: 0.45422
|
147 |
+
- type: mrr_at_3
|
148 |
+
value: 0.41927
|
149 |
+
- type: mrr_at_5
|
150 |
+
value: 0.43292
|
151 |
+
- type: ndcg_at_1
|
152 |
+
value: 0.36909
|
153 |
+
- type: ndcg_at_10
|
154 |
+
value: 0.41666
|
155 |
+
- type: ndcg_at_100
|
156 |
+
value: 0.48915
|
157 |
+
- type: ndcg_at_1000
|
158 |
+
value: 0.51348
|
159 |
+
- type: ndcg_at_3
|
160 |
+
value: 0.36592
|
161 |
+
- type: ndcg_at_5
|
162 |
+
value: 0.38787
|
163 |
+
- type: precision_at_1
|
164 |
+
value: 0.36909
|
165 |
+
- type: precision_at_10
|
166 |
+
value: 0.09327
|
167 |
+
- type: precision_at_100
|
168 |
+
value: 0.01523
|
169 |
+
- type: precision_at_1000
|
170 |
+
value: 0.00183
|
171 |
+
- type: precision_at_3
|
172 |
+
value: 0.20672
|
173 |
+
- type: precision_at_5
|
174 |
+
value: 0.15179
|
175 |
+
- type: recall_at_1
|
176 |
+
value: 0.24044
|
177 |
+
- type: recall_at_10
|
178 |
+
value: 0.5137
|
179 |
+
- type: recall_at_100
|
180 |
+
value: 0.81569
|
181 |
+
- type: recall_at_1000
|
182 |
+
value: 0.98053
|
183 |
+
- type: recall_at_3
|
184 |
+
value: 0.3612
|
185 |
+
- type: recall_at_5
|
186 |
+
value: 0.42829
|
187 |
+
- task:
|
188 |
+
type:Reranking
|
189 |
+
dataset:
|
190 |
+
type:C-MTEB/CMedQAv1-reranking
|
191 |
+
name: MTEB CMedQAv1
|
192 |
+
config: default
|
193 |
+
split:test
|
194 |
+
revision:None
|
195 |
+
metrics:
|
196 |
+
- type: map
|
197 |
+
value: 0.8440938491415716
|
198 |
+
- type: mrr
|
199 |
+
value: 0.8686722222222222
|
200 |
+
- task:
|
201 |
+
type:Reranking
|
202 |
+
dataset:
|
203 |
+
type:C-MTEB/CMedQAv2-reranking
|
204 |
+
name: MTEB CMedQAv2
|
205 |
+
config: default
|
206 |
+
split:test
|
207 |
+
revision:None
|
208 |
+
metrics:
|
209 |
+
- type: map
|
210 |
+
value: 0.852507433210034
|
211 |
+
- type: mrr
|
212 |
+
value: 0.8758742063492063
|
213 |
+
- task:
|
214 |
+
type:PairClassification
|
215 |
+
dataset:
|
216 |
+
type:C-MTEB/CMNLI
|
217 |
+
name: MTEB Cmnli
|
218 |
+
config: default
|
219 |
+
split:validation
|
220 |
+
revision:None
|
221 |
+
metrics:
|
222 |
+
- type: cos_sim_accuracy
|
223 |
+
value: 0.7592303066746843
|
224 |
+
- type: cos_sim_accuracy_threshold
|
225 |
+
value: 0.7603684663772583
|
226 |
+
- type: cos_sim_ap
|
227 |
+
value: 0.8439741959629594
|
228 |
+
- type: cos_sim_f1
|
229 |
+
value: 0.7728710064333224
|
230 |
+
- type: cos_sim_f1_threshold
|
231 |
+
value: 0.7281966805458069
|
232 |
+
- type: cos_sim_precision
|
233 |
+
value: 0.7241520228851656
|
234 |
+
- type: cos_sim_recall
|
235 |
+
value: 0.828618190320318
|
236 |
+
- type: dot_accuracy
|
237 |
+
value: 0.7592303066746843
|
238 |
+
- type: dot_accuracy_threshold
|
239 |
+
value: 0.7603684663772583
|
240 |
+
- type: dot_ap
|
241 |
+
value: 0.8439592659189602
|
242 |
+
- type: dot_f1
|
243 |
+
value: 0.7728710064333224
|
244 |
+
- type: dot_f1_threshold
|
245 |
+
value: 0.7281967401504517
|
246 |
+
- type: dot_precision
|
247 |
+
value: 0.7241520228851656
|
248 |
+
- type: dot_recall
|
249 |
+
value: 0.828618190320318
|
250 |
+
- type: euclidean_accuracy
|
251 |
+
value: 0.7592303066746843
|
252 |
+
- type: euclidean_accuracy_threshold
|
253 |
+
value: 0.6922882795333862
|
254 |
+
- type: euclidean_ap
|
255 |
+
value: 0.8439741904478117
|
256 |
+
- type: euclidean_f1
|
257 |
+
value: 0.7728710064333224
|
258 |
+
- type: euclidean_f1_threshold
|
259 |
+
value: 0.7372968196868896
|
260 |
+
- type: euclidean_precision
|
261 |
+
value: 0.7241520228851656
|
262 |
+
- type: euclidean_recall
|
263 |
+
value: 0.828618190320318
|
264 |
+
- type: manhattan_accuracy
|
265 |
+
value: 0.7583884546001203
|
266 |
+
- type: manhattan_accuracy_threshold
|
267 |
+
value: 15.160146713256836
|
268 |
+
- type: manhattan_ap
|
269 |
+
value: 0.8439482592167423
|
270 |
+
- type: manhattan_f1
|
271 |
+
value: 0.7724197186123941
|
272 |
+
- type: manhattan_f1_threshold
|
273 |
+
value: 16.451358795166016
|
274 |
+
- type: manhattan_precision
|
275 |
+
value: 0.7143424711958681
|
276 |
+
- type: manhattan_recall
|
277 |
+
value: 0.8407762450315642
|
278 |
+
- type: max_accuracy
|
279 |
+
value: 0.7592303066746843
|
280 |
+
- type: max_ap
|
281 |
+
value: 0.8439741959629594
|
282 |
+
- type: max_f1
|
283 |
+
value: 0.7728710064333224
|
284 |
+
- task:
|
285 |
+
type:Retrieval
|
286 |
+
dataset:
|
287 |
+
type:C-MTEB/CovidRetrieval
|
288 |
+
name: MTEB CovidRetrieval
|
289 |
+
config: default
|
290 |
+
split:dev
|
291 |
+
revision:None
|
292 |
+
metrics:
|
293 |
+
- type: map_at_1
|
294 |
+
value: 0.6765
|
295 |
+
- type: map_at_10
|
296 |
+
value: 0.75672
|
297 |
+
- type: map_at_100
|
298 |
+
value: 0.76005
|
299 |
+
- type: map_at_1000
|
300 |
+
value: 0.76007
|
301 |
+
- type: map_at_3
|
302 |
+
value: 0.73867
|
303 |
+
- type: map_at_5
|
304 |
+
value: 0.74949
|
305 |
+
- type: mrr_at_1
|
306 |
+
value: 0.67756
|
307 |
+
- type: mrr_at_10
|
308 |
+
value: 0.7564
|
309 |
+
- type: mrr_at_100
|
310 |
+
value: 0.75973
|
311 |
+
- type: mrr_at_1000
|
312 |
+
value: 0.75975
|
313 |
+
- type: mrr_at_3
|
314 |
+
value: 0.73867
|
315 |
+
- type: mrr_at_5
|
316 |
+
value: 0.74984
|
317 |
+
- type: ndcg_at_1
|
318 |
+
value: 0.67861
|
319 |
+
- type: ndcg_at_10
|
320 |
+
value: 0.79393
|
321 |
+
- type: ndcg_at_100
|
322 |
+
value: 0.81044
|
323 |
+
- type: ndcg_at_1000
|
324 |
+
value: 0.81153
|
325 |
+
- type: ndcg_at_3
|
326 |
+
value: 0.75767
|
327 |
+
- type: ndcg_at_5
|
328 |
+
value: 0.77714
|
329 |
+
- type: precision_at_1
|
330 |
+
value: 0.67861
|
331 |
+
- type: precision_at_10
|
332 |
+
value: 0.09199
|
333 |
+
- type: precision_at_100
|
334 |
+
value: 0.00998
|
335 |
+
- type: precision_at_1000
|
336 |
+
value: 0.00101
|
337 |
+
- type: precision_at_3
|
338 |
+
value: 0.27222
|
339 |
+
- type: precision_at_5
|
340 |
+
value: 0.17302
|
341 |
+
- type: recall_at_1
|
342 |
+
value: 0.6765
|
343 |
+
- type: recall_at_10
|
344 |
+
value: 0.90938
|
345 |
+
- type: recall_at_100
|
346 |
+
value: 0.98736
|
347 |
+
- type: recall_at_1000
|
348 |
+
value: 0.99684
|
349 |
+
- type: recall_at_3
|
350 |
+
value: 0.81138
|
351 |
+
- type: recall_at_5
|
352 |
+
value: 0.85827
|
353 |
+
- task:
|
354 |
+
type:Retrieval
|
355 |
+
dataset:
|
356 |
+
type: C-MTEB/DuRetrieval
|
357 |
+
name: MTEB DuRetrieval
|
358 |
+
config: default
|
359 |
+
split:dev
|
360 |
+
revision:None
|
361 |
+
metrics:
|
362 |
+
- type: map_at_1
|
363 |
+
value: 0.25407
|
364 |
+
- type: map_at_10
|
365 |
+
value: 0.79001
|
366 |
+
- type: map_at_100
|
367 |
+
value: 0.81983
|
368 |
+
- type: map_at_1000
|
369 |
+
value: 0.82021
|
370 |
+
- type: map_at_3
|
371 |
+
value: 0.54256
|
372 |
+
- type: map_at_5
|
373 |
+
value: 0.68918
|
374 |
+
- type: mrr_at_1
|
375 |
+
value: 0.8915
|
376 |
+
- type: mrr_at_10
|
377 |
+
value: 0.92548
|
378 |
+
- type: mrr_at_100
|
379 |
+
value: 0.92614
|
380 |
+
- type: mrr_at_1000
|
381 |
+
value: 0.92616
|
382 |
+
- type: mrr_at_3
|
383 |
+
value: 0.92175
|
384 |
+
- type: mrr_at_5
|
385 |
+
value: 0.92432
|
386 |
+
- type: ndcg_at_1
|
387 |
+
value: 0.8915
|
388 |
+
- type: ndcg_at_10
|
389 |
+
value: 0.86588
|
390 |
+
- type: ndcg_at_100
|
391 |
+
value: 0.89487
|
392 |
+
- type: ndcg_at_1000
|
393 |
+
value: 0.89841
|
394 |
+
- type: ndcg_at_3
|
395 |
+
value: 0.8501
|
396 |
+
- type: ndcg_at_5
|
397 |
+
value: 0.84301
|
398 |
+
- type: precision_at_1
|
399 |
+
value: 0.8915
|
400 |
+
- type: precision_at_10
|
401 |
+
value: 0.4171
|
402 |
+
- type: precision_at_100
|
403 |
+
value: 0.04807
|
404 |
+
- type: precision_at_1000
|
405 |
+
value: 0.00489
|
406 |
+
- type: precision_at_3
|
407 |
+
value: 0.76417
|
408 |
+
- type: precision_at_5
|
409 |
+
value: 0.6495
|
410 |
+
- type: recall_at_1
|
411 |
+
value: 0.25407
|
412 |
+
- type: recall_at_10
|
413 |
+
value: 0.88221
|
414 |
+
- type: recall_at_100
|
415 |
+
value: 0.97527
|
416 |
+
- type: recall_at_1000
|
417 |
+
value: 0.99396
|
418 |
+
- type: recall_at_3
|
419 |
+
value: 0.56751
|
420 |
+
- type: recall_at_5
|
421 |
+
value: 0.74191
|
422 |
+
- task:
|
423 |
+
type:Retrieval
|
424 |
+
dataset:
|
425 |
+
type:C-MTEB/EcomRetrieval
|
426 |
+
name: MTEB EcomRetrieval
|
427 |
+
config: default
|
428 |
+
split:dev
|
429 |
+
revision:None
|
430 |
+
metrics:
|
431 |
+
- type: map_at_1
|
432 |
+
value: 0.476
|
433 |
+
- type: map_at_10
|
434 |
+
value: 0.5715
|
435 |
+
- type: map_at_100
|
436 |
+
value: 0.57789
|
437 |
+
- type: map_at_1000
|
438 |
+
value: 0.57808
|
439 |
+
- type: map_at_3
|
440 |
+
value: 0.54467
|
441 |
+
- type: map_at_5
|
442 |
+
value: 0.56017
|
443 |
+
- type: mrr_at_1
|
444 |
+
value: 0.476
|
445 |
+
- type: mrr_at_10
|
446 |
+
value: 0.5715
|
447 |
+
- type: mrr_at_100
|
448 |
+
value: 0.57789
|
449 |
+
- type: mrr_at_1000
|
450 |
+
value: 0.57808
|
451 |
+
- type: mrr_at_3
|
452 |
+
value: 0.54467
|
453 |
+
- type: mrr_at_5
|
454 |
+
value: 0.56017
|
455 |
+
- type: ndcg_at_1
|
456 |
+
value: 0.476
|
457 |
+
- type: ndcg_at_10
|
458 |
+
value: 0.62304
|
459 |
+
- type: ndcg_at_100
|
460 |
+
value: 0.65329
|
461 |
+
- type: ndcg_at_1000
|
462 |
+
value: 0.65837
|
463 |
+
- type: ndcg_at_3
|
464 |
+
value: 0.56757
|
465 |
+
- type: ndcg_at_5
|
466 |
+
value: 0.59575
|
467 |
+
- type: precision_at_1
|
468 |
+
value: 0.476
|
469 |
+
- type: precision_at_10
|
470 |
+
value: 0.0787
|
471 |
+
- type: precision_at_100
|
472 |
+
value: 0.00926
|
473 |
+
- type: precision_at_1000
|
474 |
+
value: 0.00097
|
475 |
+
- type: precision_at_3
|
476 |
+
value: 0.21133
|
477 |
+
- type: precision_at_5
|
478 |
+
value: 0.1406
|
479 |
+
- type: recall_at_1
|
480 |
+
value: 0.476
|
481 |
+
- type: recall_at_10
|
482 |
+
value: 0.787
|
483 |
+
- type: recall_at_100
|
484 |
+
value: 0.926
|
485 |
+
- type: recall_at_1000
|
486 |
+
value: 0.966
|
487 |
+
- type: recall_at_3
|
488 |
+
value: 0.634
|
489 |
+
- type: recall_at_5
|
490 |
+
value: 0.703
|
491 |
+
- task:
|
492 |
+
type:Classification
|
493 |
+
dataset:
|
494 |
+
type:C-MTEB/IFlyTek-classification
|
495 |
+
name: MTEB IFlyTek
|
496 |
+
config: default
|
497 |
+
split:validation
|
498 |
+
revision:None
|
499 |
+
metrics:
|
500 |
+
- type: accuracy
|
501 |
+
value: 0.4828010773374375
|
502 |
+
- type: accuracy_stderr
|
503 |
+
value: 0.005244086198507375
|
504 |
+
- type: f1
|
505 |
+
value: 0.3553699530214492
|
506 |
+
- type: f1_stderr
|
507 |
+
value: 0.0037929213901079944
|
508 |
+
- type: main_score
|
509 |
+
value: 0.4828010773374375
|
510 |
+
- task:
|
511 |
+
type:Classification
|
512 |
+
dataset:
|
513 |
+
type:C-MTEB/JDReview-classification
|
514 |
+
name: MTEB JDReview
|
515 |
+
config: default
|
516 |
+
split:test
|
517 |
+
revision:None
|
518 |
+
metrics:
|
519 |
+
- type: accuracy
|
520 |
+
value: 0.8484052532833021
|
521 |
+
- type: accuracy_stderr
|
522 |
+
value: 0.015848939648737626
|
523 |
+
- type: ap
|
524 |
+
value: 0.5235323515091401
|
525 |
+
- type: ap_stderr
|
526 |
+
value: 0.02150569650954474
|
527 |
+
- type: f1
|
528 |
+
value: 0.7950069160202494
|
529 |
+
- type: f1_stderr
|
530 |
+
value: 0.01499969036259696
|
531 |
+
- type: main_score
|
532 |
+
value: 0.8484052532833021
|
533 |
+
- task:
|
534 |
+
type:STS
|
535 |
+
dataset:
|
536 |
+
type:C-MTEB/LCQMC
|
537 |
+
name: MTEB LCQMC
|
538 |
+
config: default
|
539 |
+
split:test
|
540 |
+
revision:None
|
541 |
+
metrics:
|
542 |
+
- type: cos_sim_pearson
|
543 |
+
value: 0.6968404288794713
|
544 |
+
- type: cos_sim_spearman
|
545 |
+
value: 0.7706824442481803
|
546 |
+
- type: euclidean_pearson
|
547 |
+
value: 0.7547746745802166
|
548 |
+
- type: euclidean_spearman
|
549 |
+
value: 0.7706825328995878
|
550 |
+
- type: manhattan_pearson
|
551 |
+
value: 0.7546220581621667
|
552 |
+
- type: manhattan_spearman
|
553 |
+
value: 0.7705100926919136
|
554 |
+
- task:
|
555 |
+
type:Classification
|
556 |
+
dataset:
|
557 |
+
type:mteb/amazon_massive_intent
|
558 |
+
name: MTEB MassiveIntentClassification
|
559 |
+
config: default
|
560 |
+
split:test
|
561 |
+
revision:31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
562 |
+
metrics:
|
563 |
+
- type: zh-CN_accuracy
|
564 |
+
value: 0.6745124411566913
|
565 |
+
- type: zh-CN_accuracy_stderr
|
566 |
+
value: 0.015989972974792096
|
567 |
+
- type: zh-CN_f1
|
568 |
+
value: 0.6477175074397455
|
569 |
+
- type: zh-CN_f1_stderr
|
570 |
+
value: 0.015484061914007355
|
571 |
+
- type: zh-CN_main_score
|
572 |
+
value: 0.6745124411566913
|
573 |
+
- task:
|
574 |
+
type:Classification
|
575 |
+
dataset:
|
576 |
+
type:mteb/amazon_massive_scenario
|
577 |
+
name: MTEB MassiveScenarioClassification
|
578 |
+
config: default
|
579 |
+
split:test
|
580 |
+
revision:7d571f92784cd94a019292a1f45445077d0ef634
|
581 |
+
metrics:
|
582 |
+
- type: zh-CN_accuracy
|
583 |
+
value: 0.7308002689979824
|
584 |
+
- type: zh-CN_accuracy_stderr
|
585 |
+
value: 0.015224400610167006
|
586 |
+
- type: zh-CN_f1
|
587 |
+
value: 0.7265358173635958
|
588 |
+
- type: zh-CN_f1_stderr
|
589 |
+
value: 0.014453983681998765
|
590 |
+
- type: zh-CN_main_score
|
591 |
+
value: 0.7308002689979824
|
592 |
+
- task:
|
593 |
+
type:Retrieval
|
594 |
+
dataset:
|
595 |
+
type:C-MTEB/MedicalRetrieval
|
596 |
+
name: MTEB MedicalRetrieval
|
597 |
+
config: default
|
598 |
+
split:dev
|
599 |
+
revision:None
|
600 |
+
metrics:
|
601 |
+
- type: map_at_1
|
602 |
+
value: 0.487
|
603 |
+
- type: map_at_10
|
604 |
+
value: 0.54871
|
605 |
+
- type: map_at_100
|
606 |
+
value: 0.55381
|
607 |
+
- type: map_at_1000
|
608 |
+
value: 0.55436
|
609 |
+
- type: map_at_3
|
610 |
+
value: 0.53367
|
611 |
+
- type: map_at_5
|
612 |
+
value: 0.54257
|
613 |
+
- type: mrr_at_1
|
614 |
+
value: 0.487
|
615 |
+
- type: mrr_at_10
|
616 |
+
value: 0.54871
|
617 |
+
- type: mrr_at_100
|
618 |
+
value: 0.55381
|
619 |
+
- type: mrr_at_1000
|
620 |
+
value: 0.55436
|
621 |
+
- type: mrr_at_3
|
622 |
+
value: 0.53367
|
623 |
+
- type: mrr_at_5
|
624 |
+
value: 0.54257
|
625 |
+
- type: ndcg_at_1
|
626 |
+
value: 0.487
|
627 |
+
- type: ndcg_at_10
|
628 |
+
value: 0.57942
|
629 |
+
- type: ndcg_at_100
|
630 |
+
value: 0.6075
|
631 |
+
- type: ndcg_at_1000
|
632 |
+
value: 0.62401
|
633 |
+
- type: ndcg_at_3
|
634 |
+
value: 0.54867
|
635 |
+
- type: ndcg_at_5
|
636 |
+
value: 0.56493
|
637 |
+
- type: precision_at_1
|
638 |
+
value: 0.487
|
639 |
+
- type: precision_at_10
|
640 |
+
value: 0.0676
|
641 |
+
- type: precision_at_100
|
642 |
+
value: 0.00815
|
643 |
+
- type: precision_at_1000
|
644 |
+
value: 0.00095
|
645 |
+
- type: precision_at_3
|
646 |
+
value: 0.19733
|
647 |
+
- type: precision_at_5
|
648 |
+
value: 0.1264
|
649 |
+
- type: recall_at_1
|
650 |
+
value: 0.487
|
651 |
+
- type: recall_at_10
|
652 |
+
value: 0.676
|
653 |
+
- type: recall_at_100
|
654 |
+
value: 0.815
|
655 |
+
- type: recall_at_1000
|
656 |
+
value: 0.949
|
657 |
+
- type: recall_at_3
|
658 |
+
value: 0.592
|
659 |
+
- type: recall_at_5
|
660 |
+
value: 0.632
|
661 |
+
- task:
|
662 |
+
type:Reranking
|
663 |
+
dataset:
|
664 |
+
type:C-MTEB/Mmarco-reranking
|
665 |
+
name: MTEB MmarcoReranking
|
666 |
+
config: default
|
667 |
+
split:dev
|
668 |
+
revision:None
|
669 |
+
metrics:
|
670 |
+
- type: map
|
671 |
+
value: 0.2809825725416088
|
672 |
+
- type: mrr
|
673 |
+
value: 0.2695912698412698
|
674 |
+
- task:
|
675 |
+
type:Retrieval
|
676 |
+
dataset:
|
677 |
+
type:C-MTEB/MMarcoRetrieval
|
678 |
+
name: MTEB MMarcoRetrieval
|
679 |
+
config: default
|
680 |
+
split:dev
|
681 |
+
revision:None
|
682 |
+
metrics:
|
683 |
+
- type: map_at_1
|
684 |
+
value: 0.65368
|
685 |
+
- type: map_at_10
|
686 |
+
value: 0.74294
|
687 |
+
- type: map_at_100
|
688 |
+
value: 0.74653
|
689 |
+
- type: map_at_1000
|
690 |
+
value: 0.74664
|
691 |
+
- type: map_at_3
|
692 |
+
value: 0.72416
|
693 |
+
- type: map_at_5
|
694 |
+
value: 0.73658
|
695 |
+
- type: mrr_at_1
|
696 |
+
value: 0.67507
|
697 |
+
- type: mrr_at_10
|
698 |
+
value: 0.74853
|
699 |
+
- type: mrr_at_100
|
700 |
+
value: 0.75174
|
701 |
+
- type: mrr_at_1000
|
702 |
+
value: 0.75184
|
703 |
+
- type: mrr_at_3
|
704 |
+
value: 0.73235
|
705 |
+
- type: mrr_at_5
|
706 |
+
value: 0.74298
|
707 |
+
- type: ndcg_at_1
|
708 |
+
value: 0.67507
|
709 |
+
- type: ndcg_at_10
|
710 |
+
value: 0.77948
|
711 |
+
- type: ndcg_at_100
|
712 |
+
value: 0.79555
|
713 |
+
- type: ndcg_at_1000
|
714 |
+
value: 0.79864
|
715 |
+
- type: ndcg_at_3
|
716 |
+
value: 0.74434
|
717 |
+
- type: ndcg_at_5
|
718 |
+
value: 0.76504
|
719 |
+
- type: precision_at_1
|
720 |
+
value: 0.67507
|
721 |
+
- type: precision_at_10
|
722 |
+
value: 0.09423
|
723 |
+
- type: precision_at_100
|
724 |
+
value: 0.01022
|
725 |
+
- type: precision_at_1000
|
726 |
+
value: 0.00105
|
727 |
+
- type: precision_at_3
|
728 |
+
value: 0.27975
|
729 |
+
- type: precision_at_5
|
730 |
+
value: 0.17891
|
731 |
+
- type: recall_at_1
|
732 |
+
value: 0.65368
|
733 |
+
- type: recall_at_10
|
734 |
+
value: 0.88633
|
735 |
+
- type: recall_at_100
|
736 |
+
value: 0.95889
|
737 |
+
- type: recall_at_1000
|
738 |
+
value: 0.98346
|
739 |
+
- type: recall_at_3
|
740 |
+
value: 0.79404
|
741 |
+
- type: recall_at_5
|
742 |
+
value: 0.84292
|
743 |
+
- task:
|
744 |
+
type:Classification
|
745 |
+
dataset:
|
746 |
+
type:C-MTEB/MultilingualSentiment-classification
|
747 |
+
name: MTEB MultilingualSentiment
|
748 |
+
config: default
|
749 |
+
split:validation
|
750 |
+
revision:None
|
751 |
+
metrics:
|
752 |
+
- type: accuracy
|
753 |
+
value: 0.7127000000000001
|
754 |
+
- type: accuracy_stderr
|
755 |
+
value: 0.009532925399197596
|
756 |
+
- type: f1
|
757 |
+
value: 0.7046516219039894
|
758 |
+
- type: f1_stderr
|
759 |
+
value: 0.01407386657805127
|
760 |
+
- type: main_score
|
761 |
+
value: 0.7127000000000001
|
762 |
+
- task:
|
763 |
+
type:PairClassification
|
764 |
+
dataset:
|
765 |
+
type:C-MTEB/OCNLI
|
766 |
+
name: MTEB Ocnli
|
767 |
+
config: default
|
768 |
+
split:validation
|
769 |
+
revision:None
|
770 |
+
metrics:
|
771 |
+
- type: cos_sim_accuracy
|
772 |
+
value: 0.6989713048186248
|
773 |
+
- type: cos_sim_accuracy_threshold
|
774 |
+
value: 0.7673404216766357
|
775 |
+
- type: cos_sim_ap
|
776 |
+
value: 0.7475296949416844
|
777 |
+
- type: cos_sim_f1
|
778 |
+
value: 0.730820399113082
|
779 |
+
- type: cos_sim_f1_threshold
|
780 |
+
value: 0.7212538719177246
|
781 |
+
- type: cos_sim_precision
|
782 |
+
value: 0.6299694189602446
|
783 |
+
- type: cos_sim_recall
|
784 |
+
value: 0.870116156282999
|
785 |
+
- type: dot_accuracy
|
786 |
+
value: 0.6989713048186248
|
787 |
+
- type: dot_accuracy_threshold
|
788 |
+
value: 0.7673404216766357
|
789 |
+
- type: dot_ap
|
790 |
+
value: 0.7475289228002875
|
791 |
+
- type: dot_f1
|
792 |
+
value: 0.730820399113082
|
793 |
+
- type: dot_f1_threshold
|
794 |
+
value: 0.7212539315223694
|
795 |
+
- type: dot_precision
|
796 |
+
value: 0.6299694189602446
|
797 |
+
- type: dot_recall
|
798 |
+
value: 0.870116156282999
|
799 |
+
- type: euclidean_accuracy
|
800 |
+
value: 0.6989713048186248
|
801 |
+
- type: euclidean_accuracy_threshold
|
802 |
+
value: 0.6821430325508118
|
803 |
+
- type: euclidean_ap
|
804 |
+
value: 0.7475289228002875
|
805 |
+
- type: euclidean_f1
|
806 |
+
value: 0.730820399113082
|
807 |
+
- type: euclidean_f1_threshold
|
808 |
+
value: 0.7466539740562439
|
809 |
+
- type: euclidean_precision
|
810 |
+
value: 0.6299694189602446
|
811 |
+
- type: euclidean_recall
|
812 |
+
value: 0.870116156282999
|
813 |
+
- type: manhattan_accuracy
|
814 |
+
value: 0.699512723335138
|
815 |
+
- type: manhattan_accuracy_threshold
|
816 |
+
value: 15.069363594055176
|
817 |
+
- type: manhattan_ap
|
818 |
+
value: 0.7463572749955489
|
819 |
+
- type: manhattan_f1
|
820 |
+
value: 0.7280663465735486
|
821 |
+
- type: manhattan_f1_threshold
|
822 |
+
value: 16.66558074951172
|
823 |
+
- type: manhattan_precision
|
824 |
+
value: 0.6205357142857143
|
825 |
+
- type: manhattan_recall
|
826 |
+
value: 0.880675818373812
|
827 |
+
- type: max_accuracy
|
828 |
+
value: 0.699512723335138
|
829 |
+
- type: max_ap
|
830 |
+
value: 0.7475296949416844
|
831 |
+
- type: max_f1
|
832 |
+
value: 0.730820399113082
|
833 |
+
- task:
|
834 |
+
type:Classification
|
835 |
+
dataset:
|
836 |
+
type:C-MTEB/OnlineShopping-classification
|
837 |
+
name: MTEB OnlineShopping
|
838 |
+
config: default
|
839 |
+
split:test
|
840 |
+
revision:None
|
841 |
+
metrics:
|
842 |
+
- type: accuracy
|
843 |
+
value: 0.9138
|
844 |
+
- type: accuracy_stderr
|
845 |
+
value: 0.012456323695216027
|
846 |
+
- type: ap
|
847 |
+
value: 0.8914371766660247
|
848 |
+
- type: ap_stderr
|
849 |
+
value: 0.01735000706460752
|
850 |
+
- type: f1
|
851 |
+
value: 0.9136682962995261
|
852 |
+
- type: f1_stderr
|
853 |
+
value: 0.012499748296615935
|
854 |
+
- type: main_score
|
855 |
+
value: 0.9138
|
856 |
+
- task:
|
857 |
+
type:STS
|
858 |
+
dataset:
|
859 |
+
type:C-MTEB/PAWSX
|
860 |
+
name: MTEB PAWSX
|
861 |
+
config: default
|
862 |
+
split:test
|
863 |
+
revision:None
|
864 |
+
metrics:
|
865 |
+
- type: cos_sim_pearson
|
866 |
+
value: 0.23621683997579607
|
867 |
+
- type: cos_sim_spearman
|
868 |
+
value: 0.2946714129804792
|
869 |
+
- type: euclidean_pearson
|
870 |
+
value: 0.29841725912733486
|
871 |
+
- type: euclidean_spearman
|
872 |
+
value: 0.2946695199370699
|
873 |
+
- type: manhattan_pearson
|
874 |
+
value: 0.29853598937043624
|
875 |
+
- type: manhattan_spearman
|
876 |
+
value: 0.2942340511723847
|
877 |
+
- task:
|
878 |
+
type:STS
|
879 |
+
dataset:
|
880 |
+
type:C-MTEB/QBQTC
|
881 |
+
name: MTEB QBQTC
|
882 |
+
config: default
|
883 |
+
split:test
|
884 |
+
revision:None
|
885 |
+
metrics:
|
886 |
+
- type: cos_sim_pearson
|
887 |
+
value: 0.3486196986379606
|
888 |
+
- type: cos_sim_spearman
|
889 |
+
value: 0.37316873994339983
|
890 |
+
- type: euclidean_pearson
|
891 |
+
value: 0.3552672274329054
|
892 |
+
- type: euclidean_spearman
|
893 |
+
value: 0.3731679950751101
|
894 |
+
- type: manhattan_pearson
|
895 |
+
value: 0.35558794378442254
|
896 |
+
- type: manhattan_spearman
|
897 |
+
value: 0.3736943324703548
|
898 |
+
- task:
|
899 |
+
type:STS
|
900 |
+
dataset:
|
901 |
+
type:mteb/sts22-crosslingual-sts
|
902 |
+
name: MTEB STS22
|
903 |
+
config: default
|
904 |
+
split:test
|
905 |
+
revision:6d1ba47164174a496b7fa5d3569dae26a6813b80
|
906 |
+
metrics:
|
907 |
+
- type: zh_cos_sim
|
908 |
+
value: {'pearson': 0.687924534800626, 'spearman': 0.6945014686127369}
|
909 |
+
- type: zh_euclidean
|
910 |
+
value: {'pearson': 0.6912500964503516, 'spearman': 0.6945014686127369}
|
911 |
+
- type: zh_manhattan
|
912 |
+
value: {'pearson': 0.7053825064823807, 'spearman': 0.7067595198226869}
|
913 |
+
- task:
|
914 |
+
type:STS
|
915 |
+
dataset:
|
916 |
+
type:C-MTEB/STSB
|
917 |
+
name: MTEB STSB
|
918 |
+
config: default
|
919 |
+
split:test
|
920 |
+
revision:None
|
921 |
+
metrics:
|
922 |
+
- type: cos_sim_pearson
|
923 |
+
value: 0.7902281275805849
|
924 |
+
- type: cos_sim_spearman
|
925 |
+
value: 0.7969275718339353
|
926 |
+
- type: euclidean_pearson
|
927 |
+
value: 0.7939660648560956
|
928 |
+
- type: euclidean_spearman
|
929 |
+
value: 0.7969291851788453
|
930 |
+
- type: manhattan_pearson
|
931 |
+
value: 0.793382690172365
|
932 |
+
- type: manhattan_spearman
|
933 |
+
value: 0.7963605584076028
|
934 |
+
- task:
|
935 |
+
type:Reranking
|
936 |
+
dataset:
|
937 |
+
type:C-MTEB/T2Reranking
|
938 |
+
name: MTEB T2Reranking
|
939 |
+
config: default
|
940 |
+
split:dev
|
941 |
+
revision:None
|
942 |
+
metrics:
|
943 |
+
- type: map
|
944 |
+
value: 0.6619942712343411
|
945 |
+
- type: mrr
|
946 |
+
value: 0.7576681067371656
|
947 |
+
- task:
|
948 |
+
type:Retrieval
|
949 |
+
dataset:
|
950 |
+
type:C-MTEB/T2Retrieval
|
951 |
+
name: MTEB T2Retrieval
|
952 |
+
config: default
|
953 |
+
split:dev
|
954 |
+
revision:None
|
955 |
+
metrics:
|
956 |
+
- type: map_at_1
|
957 |
+
value: 0.26594
|
958 |
+
- type: map_at_10
|
959 |
+
value: 0.75272
|
960 |
+
- type: map_at_100
|
961 |
+
value: 0.7896
|
962 |
+
- type: map_at_1000
|
963 |
+
value: 0.79032
|
964 |
+
- type: map_at_3
|
965 |
+
value: 0.5276
|
966 |
+
- type: map_at_5
|
967 |
+
value: 0.64967
|
968 |
+
- type: mrr_at_1
|
969 |
+
value: 0.88721
|
970 |
+
- type: mrr_at_10
|
971 |
+
value: 0.9138
|
972 |
+
- type: mrr_at_100
|
973 |
+
value: 0.91484
|
974 |
+
- type: mrr_at_1000
|
975 |
+
value: 0.91489
|
976 |
+
- type: mrr_at_3
|
977 |
+
value: 0.90901
|
978 |
+
- type: mrr_at_5
|
979 |
+
value: 0.9121
|
980 |
+
- type: ndcg_at_1
|
981 |
+
value: 0.88721
|
982 |
+
- type: ndcg_at_10
|
983 |
+
value: 0.83099
|
984 |
+
- type: ndcg_at_100
|
985 |
+
value: 0.86938
|
986 |
+
- type: ndcg_at_1000
|
987 |
+
value: 0.87644
|
988 |
+
- type: ndcg_at_3
|
989 |
+
value: 0.84573
|
990 |
+
- type: ndcg_at_5
|
991 |
+
value: 0.83131
|
992 |
+
- type: precision_at_1
|
993 |
+
value: 0.88721
|
994 |
+
- type: precision_at_10
|
995 |
+
value: 0.41506
|
996 |
+
- type: precision_at_100
|
997 |
+
value: 0.0499
|
998 |
+
- type: precision_at_1000
|
999 |
+
value: 0.00515
|
1000 |
+
- type: precision_at_3
|
1001 |
+
value: 0.74214
|
1002 |
+
- type: precision_at_5
|
1003 |
+
value: 0.62244
|
1004 |
+
- type: recall_at_1
|
1005 |
+
value: 0.26594
|
1006 |
+
- type: recall_at_10
|
1007 |
+
value: 0.82121
|
1008 |
+
- type: recall_at_100
|
1009 |
+
value: 0.94643
|
1010 |
+
- type: recall_at_1000
|
1011 |
+
value: 0.98261
|
1012 |
+
- type: recall_at_3
|
1013 |
+
value: 0.54539
|
1014 |
+
- type: recall_at_5
|
1015 |
+
value: 0.68573
|
1016 |
+
- task:
|
1017 |
+
type:Clustering
|
1018 |
+
dataset:
|
1019 |
+
type:C-MTEB/ThuNewsClusteringP2P
|
1020 |
+
name: MTEB ThuNewsClusteringP2P
|
1021 |
+
config: default
|
1022 |
+
split:test
|
1023 |
+
revision:None
|
1024 |
+
metrics:
|
1025 |
+
- type: v_measure
|
1026 |
+
value: 0.6234936773593232
|
1027 |
+
- type: v_measure_std
|
1028 |
+
value: 0.014872291909155068
|
1029 |
+
- task:
|
1030 |
+
type:Clustering
|
1031 |
+
dataset:
|
1032 |
+
type:C-MTEB/ThuNewsClusteringS2S
|
1033 |
+
name: MTEB ThuNewsClusteringS2S
|
1034 |
+
config: default
|
1035 |
+
split:test
|
1036 |
+
revision:None
|
1037 |
+
metrics:
|
1038 |
+
- type: v_measure
|
1039 |
+
value: 0.5865057354232379
|
1040 |
+
- type: v_measure_std
|
1041 |
+
value: 0.014281574028380747
|
1042 |
+
- task:
|
1043 |
+
type:Classification
|
1044 |
+
dataset:
|
1045 |
+
type:C-MTEB/TNews-classification
|
1046 |
+
name: MTEB TNews
|
1047 |
+
config: default
|
1048 |
+
split:validation
|
1049 |
+
revision:None
|
1050 |
+
metrics:
|
1051 |
+
- type: accuracy
|
1052 |
+
value: 0.51845
|
1053 |
+
- type: accuracy_stderr
|
1054 |
+
value: 0.006959058844412791
|
1055 |
+
- type: f1
|
1056 |
+
value: 0.4997529772676145
|
1057 |
+
- type: f1_stderr
|
1058 |
+
value: 0.007865498715360303
|
1059 |
+
- type: main_score
|
1060 |
+
value: 0.51845
|
1061 |
+
- task:
|
1062 |
+
type:Retrieval
|
1063 |
+
dataset:
|
1064 |
+
type:C-MTEB/VideoRetrieval
|
1065 |
+
name: MTEB VideoRetrieval
|
1066 |
+
config: default
|
1067 |
+
split:dev
|
1068 |
+
revision:None
|
1069 |
+
metrics:
|
1070 |
+
- type: map_at_1
|
1071 |
+
value: 0.522
|
1072 |
+
- type: map_at_10
|
1073 |
+
value: 0.62669
|
1074 |
+
- type: map_at_100
|
1075 |
+
value: 0.63239
|
1076 |
+
- type: map_at_1000
|
1077 |
+
value: 0.63253
|
1078 |
+
- type: map_at_3
|
1079 |
+
value: 0.60267
|
1080 |
+
- type: map_at_5
|
1081 |
+
value: 0.61772
|
1082 |
+
- type: mrr_at_1
|
1083 |
+
value: 0.522
|
1084 |
+
- type: mrr_at_10
|
1085 |
+
value: 0.62669
|
1086 |
+
- type: mrr_at_100
|
1087 |
+
value: 0.63239
|
1088 |
+
- type: mrr_at_1000
|
1089 |
+
value: 0.63253
|
1090 |
+
- type: mrr_at_3
|
1091 |
+
value: 0.60267
|
1092 |
+
- type: mrr_at_5
|
1093 |
+
value: 0.61772
|
1094 |
+
- type: ndcg_at_1
|
1095 |
+
value: 0.522
|
1096 |
+
- type: ndcg_at_10
|
1097 |
+
value: 0.67583
|
1098 |
+
- type: ndcg_at_100
|
1099 |
+
value: 0.70305
|
1100 |
+
- type: ndcg_at_1000
|
1101 |
+
value: 0.70652
|
1102 |
+
- type: ndcg_at_3
|
1103 |
+
value: 0.62776
|
1104 |
+
- type: ndcg_at_5
|
1105 |
+
value: 0.6547
|
1106 |
+
- type: precision_at_1
|
1107 |
+
value: 0.522
|
1108 |
+
- type: precision_at_10
|
1109 |
+
value: 0.0829
|
1110 |
+
- type: precision_at_100
|
1111 |
+
value: 0.00955
|
1112 |
+
- type: precision_at_1000
|
1113 |
+
value: 0.00098
|
1114 |
+
- type: precision_at_3
|
1115 |
+
value: 0.23333
|
1116 |
+
- type: precision_at_5
|
1117 |
+
value: 0.153
|
1118 |
+
- type: recall_at_1
|
1119 |
+
value: 0.522
|
1120 |
+
- type: recall_at_10
|
1121 |
+
value: 0.829
|
1122 |
+
- type: recall_at_100
|
1123 |
+
value: 0.955
|
1124 |
+
- type: recall_at_1000
|
1125 |
+
value: 0.982
|
1126 |
+
- type: recall_at_3
|
1127 |
+
value: 0.7
|
1128 |
+
- type: recall_at_5
|
1129 |
+
value: 0.765
|
1130 |
+
- task:
|
1131 |
+
type:Classification
|
1132 |
+
dataset:
|
1133 |
+
type: C-MTEB/waimai-classification
|
1134 |
+
name: MTEB Waimai
|
1135 |
+
config: default
|
1136 |
+
split:test
|
1137 |
+
revision:None
|
1138 |
+
metrics:
|
1139 |
+
- type: accuracy
|
1140 |
+
value: 0.8664999999999999
|
1141 |
+
- type: accuracy_stderr
|
1142 |
+
value: 0.007697402159170332
|
1143 |
+
- type: ap
|
1144 |
+
value: 0.6990209999390807
|
1145 |
+
- type: ap_stderr
|
1146 |
+
value: 0.014543148063974986
|
1147 |
+
- type: f1
|
1148 |
+
value: 0.849231810656075
|
1149 |
+
- type: f1_stderr
|
1150 |
+
value: 0.0073258070989864026
|
1151 |
+
- type: main_score
|
1152 |
+
value: 0.8664999999999999
|