First Commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -225.35 +/- 90.44
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>", "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651683866.906479, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIALq72k1me7hh2SPQMySL0Qzrs85LssPgAAAAAAAIA/4GuRPmD64j5r7O88EuXVvtXuiD3UHCW8AAAAAAAAAACTkIs+m8uVPnH8P71Fi0e+ogz7PNILVr0AAAAAAAAAANraDz7XISQ/IDSDPTXkz77/+Bc+lQzBPQAAAAAAAAAAGng6vrRVuD+CRMm+nsNOvo56VL1gvTC7AAAAAAAAAACaQVk7Vhm0PyHpqz5JWTG+U0x7u9HCm70AAAAAAAAAAN7jLr+0Uk+++FS4PC5qE7v7nBa+JkQKNQAAgD8AAIA/Y02HPrOyNT/ZCAw+d/Dcvo3DqTzOiI89AAAAAAAAAABAsy4+Bn2dP4iMiz5vP7i+W/XXPB7VH70AAAAAAAAAAI1i1j2JgyM/MisqPcsM/74t+Z876nylPAAAAAAAAAAAYpEDPwAjzL32y6M5Wi7NN9d8xb3jlmm3AACAPwAAgD8A+5a99rKuPwYWEL/XmEy+JISLPfX4XT0AAAAAAAAAAGaQeTxHE64+jhEvPvPbZr4Jaxw9s2THPQAAAAAAAAAAzeyJvH4sqT9VIeq9xnV3vkrYwjwYh1o8AAAAAAAAAACN4gA+crZvP045Mj6l45i+97JCPI7tfj0AAAAAAAAAAJpjx7z0vKE/tosZvu783r7NihO9BitvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILh1znrFPQUCUhpRSlIwBbJRLf4wBdJRHQGl7CMglnh91fZQoaAZoCWgPQwiGyypsBvAkwJSGlFKUaBVLh2gWR0BpglY8uBczdX2UKGgGaAloD0MIaeId4EmXT8CUhpRSlGgVS5VoFkdAaYRL0SRKYnV9lChoBmgJaA9DCJPGaB1VfSjAlIaUUpRoFUtlaBZHQGmRd0JWvKV1fZQoaAZoCWgPQwjqBDQRNqVSwJSGlFKUaBVLu2gWR0Bplsk8ifQKdX2UKGgGaAloD0MIhq5EoPoDOcCUhpRSlGgVS5VoFkdAaZm6hg3Lm3V9lChoBmgJaA9DCDJXBtUGz0DAlIaUUpRoFUuBaBZHQGmfzVtoBaN1fZQoaAZoCWgPQwj600Z1Ong6wJSGlFKUaBVLtGgWR0BppPMdLg4wdX2UKGgGaAloD0MIAOSECaOoVcCUhpRSlGgVS91oFkdAaaVMkhRqGnV9lChoBmgJaA9DCA2qDU5EkFjAlIaUUpRoFU0JAWgWR0BpqGLLpzLfdX2UKGgGaAloD0MI3sfRHFkJKkCUhpRSlGgVS39oFkdAaa0nTAnDznV9lChoBmgJaA9DCN7/xwkTfj7AlIaUUpRoFUuRaBZHQGmxMPJ7sv91fZQoaAZoCWgPQwjCaFa2D7kzwJSGlFKUaBVLsmgWR0Bpsz9ZRsMzdX2UKGgGaAloD0MIi/1l9+QRR8CUhpRSlGgVS3BoFkdAabec6vJRwnV9lChoBmgJaA9DCHiazHhbQT/AlIaUUpRoFUtwaBZHQGm9Gkep4r11fZQoaAZoCWgPQwgRjINLx11mwJSGlFKUaBVL+2gWR0BpwBtpEhJRdX2UKGgGaAloD0MIqg8k7xzSMMCUhpRSlGgVTegDaBZHQGnKhcZ9/jN1fZQoaAZoCWgPQwikq3R3nb0hQJSGlFKUaBVLbWgWR0Bp1P7UG3WndX2UKGgGaAloD0MI4DDRIAVpQ8CUhpRSlGgVS7ZoFkdAadbxo7FKkHV9lChoBmgJaA9DCMHgmjv6SUnAlIaUUpRoFUuhaBZHQGnaztkWhyt1fZQoaAZoCWgPQwhL5ljeVa1DwJSGlFKUaBVLsGgWR0Bp4xiiItUXdX2UKGgGaAloD0MIfnGpSluWRMCUhpRSlGgVS9NoFkdAaea3sHB1tHV9lChoBmgJaA9DCLpqniPyPTPAlIaUUpRoFUuzaBZHQGnorofSx7l1fZQoaAZoCWgPQwghXAGFemZAwJSGlFKUaBVLpWgWR0Bp6a/RE4NrdX2UKGgGaAloD0MI3e9QFOgRTMCUhpRSlGgVS+JoFkdAafCyHEdeY3V9lChoBmgJaA9DCNemsb0W1DLAlIaUUpRoFUuiaBZHQGn1Ok+HJtB1fZQoaAZoCWgPQwiKdap8zwj4P5SGlFKUaBVN6ANoFkdAagIV3Ux20XV9lChoBmgJaA9DCMkCJnDr1i1AlIaUUpRoFUvlaBZHQGoC/FirksB1fZQoaAZoCWgPQwgrMc9KWmEeQJSGlFKUaBVLz2gWR0BqDOHnEETydX2UKGgGaAloD0MI/OJSlbZ4EUCUhpRSlGgVS/toFkdAag4OhkAggXV9lChoBmgJaA9DCNZz0vvGGVDAlIaUUpRoFUutaBZHQGoOUNrj5sV1fZQoaAZoCWgPQwjAsz16w6NEwJSGlFKUaBVLgGgWR0BqDtEVnEl3dX2UKGgGaAloD0MIj+BGyhbxIcCUhpRSlGgVS6loFkdAahBc580DU3V9lChoBmgJaA9DCEQX1LfM+T3AlIaUUpRoFUu7aBZHQGoQXtKIznB1fZQoaAZoCWgPQwhaRuo9ledOwJSGlFKUaBVLlGgWR0BqFjENvwVkdX2UKGgGaAloD0MITvIjfsUyQECUhpRSlGgVS6poFkdAaiIX3xnWa3V9lChoBmgJaA9DCLUzTG2p6yrAlIaUUpRoFUvSaBZHQGomnjZL7Gh1fZQoaAZoCWgPQwhUck7soaJVwJSGlFKUaBVL42gWR0BqJvNiYsundX2UKGgGaAloD0MImZ1F71TDUsCUhpRSlGgVS61oFkdAaidQnhKlHnV9lChoBmgJaA9DCHx+GCE82tY/lIaUUpRoFUtnaBZHQGoqLjYI0Il1fZQoaAZoCWgPQwjVr3Q+PH89wJSGlFKUaBVLmWgWR0BqLBT850bMdX2UKGgGaAloD0MISaEsfH2rRsCUhpRSlGgVS7JoFkdAajOmjTKDCnV9lChoBmgJaA9DCAuYwK27WlVAlIaUUpRoFU3oA2gWR0BqNpKtga3rdX2UKGgGaAloD0MIpREz+zz2KMCUhpRSlGgVS7FoFkdAajxB9kSVW3V9lChoBmgJaA9DCC7HKxA9iTnAlIaUUpRoFUuxaBZHQGo9OdXko4N1fZQoaAZoCWgPQwhDklm9wztHwJSGlFKUaBVLrmgWR0BqPSq2jO9ndX2UKGgGaAloD0MIvAfovpzRIkCUhpRSlGgVS5VoFkdAaj470WdmQXV9lChoBmgJaA9DCMdnsn+e3kHAlIaUUpRoFUt7aBZHQGpCPJ7sv7F1fZQoaAZoCWgPQwisjbETXpBEwJSGlFKUaBVLwWgWR0BqQsqUeMhpdX2UKGgGaAloD0MIY+/FF+1jUsCUhpRSlGgVS2BoFkdAalNaTwDvE3V9lChoBmgJaA9DCGPxm8JKHUHAlIaUUpRoFUu0aBZHQGpUc5bQkX11fZQoaAZoCWgPQwiowwq3fOwhwJSGlFKUaBVLuGgWR0BqVTZSNwR5dX2UKGgGaAloD0MI1H/W/PjL4j+UhpRSlGgVS3FoFkdAalnf0Eovz3V9lChoBmgJaA9DCAzohTsXMjPAlIaUUpRoFUt3aBZHQGpaY3Ns3yZ1fZQoaAZoCWgPQwgiMxe4PPBIwJSGlFKUaBVLnmgWR0BqWp7TlT3qdX2UKGgGaAloD0MIHEEqxY4OTsCUhpRSlGgVS9BoFkdAalsoMKCxvHV9lChoBmgJaA9DCLcos0EmYS9AlIaUUpRoFUvKaBZHQGpc4HHFPzp1fZQoaAZoCWgPQwinID8buUBQwJSGlFKUaBVLqmgWR0BqYAa1kUbldX2UKGgGaAloD0MIN4qsNZQyRsCUhpRSlGgVS5JoFkdAamD7zkIX03V9lChoBmgJaA9DCNxlv+50qUvAlIaUUpRoFUu6aBZHQGpxHAymALB1fZQoaAZoCWgPQwgUzm4tk/xUQJSGlFKUaBVN6ANoFkdAanIZtvXK83V9lChoBmgJaA9DCFn4+lqXShHAlIaUUpRoFUt6aBZHQGpysjFAE+x1fZQoaAZoCWgPQwj9LQH4pxQMQJSGlFKUaBVLb2gWR0BqdoWYWtU5dX2UKGgGaAloD0MIUKbR5OKRasCUhpRSlGgVTZEBaBZHQGp3BHbypaR1fZQoaAZoCWgPQwi8BKc+kNZNwJSGlFKUaBVN6ANoFkdAanx62v0ROHV9lChoBmgJaA9DCM2TawpkNhJAlIaUUpRoFUukaBZHQGp9pWFN+LF1fZQoaAZoCWgPQwgj2SPUDEkjwJSGlFKUaBVLiGgWR0BqfgQg9vCNdX2UKGgGaAloD0MIPbt868N6IsCUhpRSlGgVS7BoFkdAaoRuP3i71HV9lChoBmgJaA9DCCEhyhe0IDfAlIaUUpRoFUvQaBZHQGqFyx7iQ1d1fZQoaAZoCWgPQwi8z/HR4spGwJSGlFKUaBVLX2gWR0BqhxuIhyKfdX2UKGgGaAloD0MI0lEOZhNg6r+UhpRSlGgVS8ZoFkdAaojEjPfKp3V9lChoBmgJaA9DCNuIJ7uZgRjAlIaUUpRoFUu/aBZHQGqMtTUAks11fZQoaAZoCWgPQwh9CKpGrxpJwJSGlFKUaBVLbGgWR0BqjR4bCJoCdX2UKGgGaAloD0MIkC42rRR+Q8CUhpRSlGgVS2JoFkdAapG44Ia99XV9lChoBmgJaA9DCOl/uRYt8EXAlIaUUpRoFUvfaBZHQGqSj9wWFex1fZQoaAZoCWgPQwiNmq+Sj+0TQJSGlFKUaBVLmGgWR0BqlrblA/s3dX2UKGgGaAloD0MIuTR+4ZW0MUCUhpRSlGgVTQ4BaBZHQGqXRgAp8Wt1fZQoaAZoCWgPQwgNw0fElFJHwJSGlFKUaBVLyGgWR0Bqm4aWHDaXdX2UKGgGaAloD0MIpb3BFyZrUMCUhpRSlGgVS9doFkdAap+P1+RYBHV9lChoBmgJaA9DCEPFOH8TtEjAlIaUUpRoFUt9aBZHQGqnuJ1q33J1fZQoaAZoCWgPQwhTliGOdflNwJSGlFKUaBVLzGgWR0BqqXFDOTq0dX2UKGgGaAloD0MIj8TL07lCOsCUhpRSlGgVS6VoFkdAaqqwbEP1+XV9lChoBmgJaA9DCFZHjnQGVi7AlIaUUpRoFUu+aBZHQGqvcxj8UEh1fZQoaAZoCWgPQwhR3Vz8bQ/2P5SGlFKUaBVLo2gWR0BqsU8YAKfGdX2UKGgGaAloD0MIL75ojxfWOUCUhpRSlGgVS4FoFkdAarTYSQHRkXV9lChoBmgJaA9DCIXukjgrojjAlIaUUpRoFUveaBZHQGq1vWYnfEZ1fZQoaAZoCWgPQwiKkSVzLCNEQJSGlFKUaBVL1GgWR0Bqt/pSrHU+dX2UKGgGaAloD0MIJ/VlaacqMMCUhpRSlGgVS2FoFkdAasPGrCFbmnV9lChoBmgJaA9DCN+kaVA0XxFAlIaUUpRoFUvFaBZHQGrEjQzDXOJ1fZQoaAZoCWgPQwgu5ueGpnwywJSGlFKUaBVLp2gWR0BqyBJAdGRWdX2UKGgGaAloD0MInuqQm+GGEkCUhpRSlGgVS75oFkdAasgF49ovjHV9lChoBmgJaA9DCMO5hhka+VXAlIaUUpRoFUueaBZHQGrKcGcFyJd1fZQoaAZoCWgPQwjOcW4T7pU8wJSGlFKUaBVLamgWR0BqzkG7jDKpdX2UKGgGaAloD0MIkLxzKEN9NMCUhpRSlGgVS2xoFkdAatCyeI2wV3V9lChoBmgJaA9DCMcTQZyHf1HAlIaUUpRoFUvHaBZHQGrgh0IToMd1fZQoaAZoCWgPQwhO7+L9uLdEwJSGlFKUaBVLl2gWR0Bq5AiFCb+cdX2UKGgGaAloD0MIETXR5yM0Z8CUhpRSlGgVTasCaBZHQGrsgv114gR1fZQoaAZoCWgPQwjejQWFQTkywJSGlFKUaBVLvWgWR0Bq7NuP3i71dX2UKGgGaAloD0MIRKLQsu7XLsCUhpRSlGgVS5hoFkdAau1tTDO1OXV9lChoBmgJaA9DCNEGYAMipChAlIaUUpRoFUv5aBZHQGrwvVmSQo11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d6bfea4cbbf9aaacd91313b55866e92e1e2ae9308bec5d91c27f99ec7560c75
|
3 |
+
size 143923
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 229376,
|
46 |
+
"_total_timesteps": 200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651683866.906479,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIALq72k1me7hh2SPQMySL0Qzrs85LssPgAAAAAAAIA/4GuRPmD64j5r7O88EuXVvtXuiD3UHCW8AAAAAAAAAACTkIs+m8uVPnH8P71Fi0e+ogz7PNILVr0AAAAAAAAAANraDz7XISQ/IDSDPTXkz77/+Bc+lQzBPQAAAAAAAAAAGng6vrRVuD+CRMm+nsNOvo56VL1gvTC7AAAAAAAAAACaQVk7Vhm0PyHpqz5JWTG+U0x7u9HCm70AAAAAAAAAAN7jLr+0Uk+++FS4PC5qE7v7nBa+JkQKNQAAgD8AAIA/Y02HPrOyNT/ZCAw+d/Dcvo3DqTzOiI89AAAAAAAAAABAsy4+Bn2dP4iMiz5vP7i+W/XXPB7VH70AAAAAAAAAAI1i1j2JgyM/MisqPcsM/74t+Z876nylPAAAAAAAAAAAYpEDPwAjzL32y6M5Wi7NN9d8xb3jlmm3AACAPwAAgD8A+5a99rKuPwYWEL/XmEy+JISLPfX4XT0AAAAAAAAAAGaQeTxHE64+jhEvPvPbZr4Jaxw9s2THPQAAAAAAAAAAzeyJvH4sqT9VIeq9xnV3vkrYwjwYh1o8AAAAAAAAAACN4gA+crZvP045Mj6l45i+97JCPI7tfj0AAAAAAAAAAJpjx7z0vKE/tosZvu783r7NihO9BitvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILh1znrFPQUCUhpRSlIwBbJRLf4wBdJRHQGl7CMglnh91fZQoaAZoCWgPQwiGyypsBvAkwJSGlFKUaBVLh2gWR0BpglY8uBczdX2UKGgGaAloD0MIaeId4EmXT8CUhpRSlGgVS5VoFkdAaYRL0SRKYnV9lChoBmgJaA9DCJPGaB1VfSjAlIaUUpRoFUtlaBZHQGmRd0JWvKV1fZQoaAZoCWgPQwjqBDQRNqVSwJSGlFKUaBVLu2gWR0Bplsk8ifQKdX2UKGgGaAloD0MIhq5EoPoDOcCUhpRSlGgVS5VoFkdAaZm6hg3Lm3V9lChoBmgJaA9DCDJXBtUGz0DAlIaUUpRoFUuBaBZHQGmfzVtoBaN1fZQoaAZoCWgPQwj600Z1Ong6wJSGlFKUaBVLtGgWR0BppPMdLg4wdX2UKGgGaAloD0MIAOSECaOoVcCUhpRSlGgVS91oFkdAaaVMkhRqGnV9lChoBmgJaA9DCA2qDU5EkFjAlIaUUpRoFU0JAWgWR0BpqGLLpzLfdX2UKGgGaAloD0MI3sfRHFkJKkCUhpRSlGgVS39oFkdAaa0nTAnDznV9lChoBmgJaA9DCN7/xwkTfj7AlIaUUpRoFUuRaBZHQGmxMPJ7sv91fZQoaAZoCWgPQwjCaFa2D7kzwJSGlFKUaBVLsmgWR0Bpsz9ZRsMzdX2UKGgGaAloD0MIi/1l9+QRR8CUhpRSlGgVS3BoFkdAabec6vJRwnV9lChoBmgJaA9DCHiazHhbQT/AlIaUUpRoFUtwaBZHQGm9Gkep4r11fZQoaAZoCWgPQwgRjINLx11mwJSGlFKUaBVL+2gWR0BpwBtpEhJRdX2UKGgGaAloD0MIqg8k7xzSMMCUhpRSlGgVTegDaBZHQGnKhcZ9/jN1fZQoaAZoCWgPQwikq3R3nb0hQJSGlFKUaBVLbWgWR0Bp1P7UG3WndX2UKGgGaAloD0MI4DDRIAVpQ8CUhpRSlGgVS7ZoFkdAadbxo7FKkHV9lChoBmgJaA9DCMHgmjv6SUnAlIaUUpRoFUuhaBZHQGnaztkWhyt1fZQoaAZoCWgPQwhL5ljeVa1DwJSGlFKUaBVLsGgWR0Bp4xiiItUXdX2UKGgGaAloD0MIfnGpSluWRMCUhpRSlGgVS9NoFkdAaea3sHB1tHV9lChoBmgJaA9DCLpqniPyPTPAlIaUUpRoFUuzaBZHQGnorofSx7l1fZQoaAZoCWgPQwghXAGFemZAwJSGlFKUaBVLpWgWR0Bp6a/RE4NrdX2UKGgGaAloD0MI3e9QFOgRTMCUhpRSlGgVS+JoFkdAafCyHEdeY3V9lChoBmgJaA9DCNemsb0W1DLAlIaUUpRoFUuiaBZHQGn1Ok+HJtB1fZQoaAZoCWgPQwiKdap8zwj4P5SGlFKUaBVN6ANoFkdAagIV3Ux20XV9lChoBmgJaA9DCMkCJnDr1i1AlIaUUpRoFUvlaBZHQGoC/FirksB1fZQoaAZoCWgPQwgrMc9KWmEeQJSGlFKUaBVLz2gWR0BqDOHnEETydX2UKGgGaAloD0MI/OJSlbZ4EUCUhpRSlGgVS/toFkdAag4OhkAggXV9lChoBmgJaA9DCNZz0vvGGVDAlIaUUpRoFUutaBZHQGoOUNrj5sV1fZQoaAZoCWgPQwjAsz16w6NEwJSGlFKUaBVLgGgWR0BqDtEVnEl3dX2UKGgGaAloD0MIj+BGyhbxIcCUhpRSlGgVS6loFkdAahBc580DU3V9lChoBmgJaA9DCEQX1LfM+T3AlIaUUpRoFUu7aBZHQGoQXtKIznB1fZQoaAZoCWgPQwhaRuo9ledOwJSGlFKUaBVLlGgWR0BqFjENvwVkdX2UKGgGaAloD0MITvIjfsUyQECUhpRSlGgVS6poFkdAaiIX3xnWa3V9lChoBmgJaA9DCLUzTG2p6yrAlIaUUpRoFUvSaBZHQGomnjZL7Gh1fZQoaAZoCWgPQwhUck7soaJVwJSGlFKUaBVL42gWR0BqJvNiYsundX2UKGgGaAloD0MImZ1F71TDUsCUhpRSlGgVS61oFkdAaidQnhKlHnV9lChoBmgJaA9DCHx+GCE82tY/lIaUUpRoFUtnaBZHQGoqLjYI0Il1fZQoaAZoCWgPQwjVr3Q+PH89wJSGlFKUaBVLmWgWR0BqLBT850bMdX2UKGgGaAloD0MISaEsfH2rRsCUhpRSlGgVS7JoFkdAajOmjTKDCnV9lChoBmgJaA9DCAuYwK27WlVAlIaUUpRoFU3oA2gWR0BqNpKtga3rdX2UKGgGaAloD0MIpREz+zz2KMCUhpRSlGgVS7FoFkdAajxB9kSVW3V9lChoBmgJaA9DCC7HKxA9iTnAlIaUUpRoFUuxaBZHQGo9OdXko4N1fZQoaAZoCWgPQwhDklm9wztHwJSGlFKUaBVLrmgWR0BqPSq2jO9ndX2UKGgGaAloD0MIvAfovpzRIkCUhpRSlGgVS5VoFkdAaj470WdmQXV9lChoBmgJaA9DCMdnsn+e3kHAlIaUUpRoFUt7aBZHQGpCPJ7sv7F1fZQoaAZoCWgPQwisjbETXpBEwJSGlFKUaBVLwWgWR0BqQsqUeMhpdX2UKGgGaAloD0MIY+/FF+1jUsCUhpRSlGgVS2BoFkdAalNaTwDvE3V9lChoBmgJaA9DCGPxm8JKHUHAlIaUUpRoFUu0aBZHQGpUc5bQkX11fZQoaAZoCWgPQwiowwq3fOwhwJSGlFKUaBVLuGgWR0BqVTZSNwR5dX2UKGgGaAloD0MI1H/W/PjL4j+UhpRSlGgVS3FoFkdAalnf0Eovz3V9lChoBmgJaA9DCAzohTsXMjPAlIaUUpRoFUt3aBZHQGpaY3Ns3yZ1fZQoaAZoCWgPQwgiMxe4PPBIwJSGlFKUaBVLnmgWR0BqWp7TlT3qdX2UKGgGaAloD0MIHEEqxY4OTsCUhpRSlGgVS9BoFkdAalsoMKCxvHV9lChoBmgJaA9DCLcos0EmYS9AlIaUUpRoFUvKaBZHQGpc4HHFPzp1fZQoaAZoCWgPQwinID8buUBQwJSGlFKUaBVLqmgWR0BqYAa1kUbldX2UKGgGaAloD0MIN4qsNZQyRsCUhpRSlGgVS5JoFkdAamD7zkIX03V9lChoBmgJaA9DCNxlv+50qUvAlIaUUpRoFUu6aBZHQGpxHAymALB1fZQoaAZoCWgPQwgUzm4tk/xUQJSGlFKUaBVN6ANoFkdAanIZtvXK83V9lChoBmgJaA9DCFn4+lqXShHAlIaUUpRoFUt6aBZHQGpysjFAE+x1fZQoaAZoCWgPQwj9LQH4pxQMQJSGlFKUaBVLb2gWR0BqdoWYWtU5dX2UKGgGaAloD0MIUKbR5OKRasCUhpRSlGgVTZEBaBZHQGp3BHbypaR1fZQoaAZoCWgPQwi8BKc+kNZNwJSGlFKUaBVN6ANoFkdAanx62v0ROHV9lChoBmgJaA9DCM2TawpkNhJAlIaUUpRoFUukaBZHQGp9pWFN+LF1fZQoaAZoCWgPQwgj2SPUDEkjwJSGlFKUaBVLiGgWR0BqfgQg9vCNdX2UKGgGaAloD0MIPbt868N6IsCUhpRSlGgVS7BoFkdAaoRuP3i71HV9lChoBmgJaA9DCCEhyhe0IDfAlIaUUpRoFUvQaBZHQGqFyx7iQ1d1fZQoaAZoCWgPQwi8z/HR4spGwJSGlFKUaBVLX2gWR0BqhxuIhyKfdX2UKGgGaAloD0MI0lEOZhNg6r+UhpRSlGgVS8ZoFkdAaojEjPfKp3V9lChoBmgJaA9DCNuIJ7uZgRjAlIaUUpRoFUu/aBZHQGqMtTUAks11fZQoaAZoCWgPQwh9CKpGrxpJwJSGlFKUaBVLbGgWR0BqjR4bCJoCdX2UKGgGaAloD0MIkC42rRR+Q8CUhpRSlGgVS2JoFkdAapG44Ia99XV9lChoBmgJaA9DCOl/uRYt8EXAlIaUUpRoFUvfaBZHQGqSj9wWFex1fZQoaAZoCWgPQwiNmq+Sj+0TQJSGlFKUaBVLmGgWR0BqlrblA/s3dX2UKGgGaAloD0MIuTR+4ZW0MUCUhpRSlGgVTQ4BaBZHQGqXRgAp8Wt1fZQoaAZoCWgPQwgNw0fElFJHwJSGlFKUaBVLyGgWR0Bqm4aWHDaXdX2UKGgGaAloD0MIpb3BFyZrUMCUhpRSlGgVS9doFkdAap+P1+RYBHV9lChoBmgJaA9DCEPFOH8TtEjAlIaUUpRoFUt9aBZHQGqnuJ1q33J1fZQoaAZoCWgPQwhTliGOdflNwJSGlFKUaBVLzGgWR0BqqXFDOTq0dX2UKGgGaAloD0MIj8TL07lCOsCUhpRSlGgVS6VoFkdAaqqwbEP1+XV9lChoBmgJaA9DCFZHjnQGVi7AlIaUUpRoFUu+aBZHQGqvcxj8UEh1fZQoaAZoCWgPQwhR3Vz8bQ/2P5SGlFKUaBVLo2gWR0BqsU8YAKfGdX2UKGgGaAloD0MIL75ojxfWOUCUhpRSlGgVS4FoFkdAarTYSQHRkXV9lChoBmgJaA9DCIXukjgrojjAlIaUUpRoFUveaBZHQGq1vWYnfEZ1fZQoaAZoCWgPQwiKkSVzLCNEQJSGlFKUaBVL1GgWR0Bqt/pSrHU+dX2UKGgGaAloD0MIJ/VlaacqMMCUhpRSlGgVS2FoFkdAasPGrCFbmnV9lChoBmgJaA9DCN+kaVA0XxFAlIaUUpRoFUvFaBZHQGrEjQzDXOJ1fZQoaAZoCWgPQwgu5ueGpnwywJSGlFKUaBVLp2gWR0BqyBJAdGRWdX2UKGgGaAloD0MInuqQm+GGEkCUhpRSlGgVS75oFkdAasgF49ovjHV9lChoBmgJaA9DCMO5hhka+VXAlIaUUpRoFUueaBZHQGrKcGcFyJd1fZQoaAZoCWgPQwjOcW4T7pU8wJSGlFKUaBVLamgWR0BqzkG7jDKpdX2UKGgGaAloD0MIkLxzKEN9NMCUhpRSlGgVS2xoFkdAatCyeI2wV3V9lChoBmgJaA9DCMcTQZyHf1HAlIaUUpRoFUvHaBZHQGrgh0IToMd1fZQoaAZoCWgPQwhO7+L9uLdEwJSGlFKUaBVLl2gWR0Bq5AiFCb+cdX2UKGgGaAloD0MIETXR5yM0Z8CUhpRSlGgVTasCaBZHQGrsgv114gR1fZQoaAZoCWgPQwjejQWFQTkywJSGlFKUaBVLvWgWR0Bq7NuP3i71dX2UKGgGaAloD0MIRKLQsu7XLsCUhpRSlGgVS5hoFkdAau1tTDO1OXV9lChoBmgJaA9DCNEGYAMipChAlIaUUpRoFUv5aBZHQGrwvVmSQo11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 70,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a734d1b606bb40d247133c8afed44b3c34a9cd07374714dfcd694d9f87f5aecb
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa9019a0aafaf41c8da82b7cde2a2523cf8667be13ae5d4bffeaa49f5f5db8d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:398ac5026cb493d7bdd76128b386583f938f48165d015623a05cd0d49c262ef5
|
3 |
+
size 148393
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -225.35176102861442, "std_reward": 90.43684101362318, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T17:20:52.869205"}
|