--- license: apache-2.0 tags: - classification - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: sentence-acceptability results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Accuracy type: accuracy value: 0.8216682646212847 --- # sentence-acceptability This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8257 - Accuracy: 0.8217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4868 | 1.0 | 1069 | 0.6279 | 0.7862 | | 0.3037 | 2.0 | 2138 | 0.6184 | 0.8140 | | 0.177 | 3.0 | 3207 | 0.8257 | 0.8217 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2