--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-finetuned-CONLL2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9276294098252555 - name: Recall type: recall value: 0.9469875462807136 - name: F1 type: f1 value: 0.9372085276482345 - name: Accuracy type: accuracy value: 0.9848119149938188 --- # distilbert-base-cased-finetuned-CONLL2003 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0983 - Precision: 0.9276 - Recall: 0.9470 - F1: 0.9372 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0302 | 1.0 | 1756 | 0.0832 | 0.9055 | 0.9318 | 0.9185 | 0.9812 | | 0.024 | 2.0 | 3512 | 0.0867 | 0.9237 | 0.9387 | 0.9311 | 0.9833 | | 0.0123 | 3.0 | 5268 | 0.0909 | 0.9224 | 0.9438 | 0.9330 | 0.9845 | | 0.0059 | 4.0 | 7024 | 0.0962 | 0.9218 | 0.9448 | 0.9332 | 0.9844 | | 0.0026 | 5.0 | 8780 | 0.0983 | 0.9276 | 0.9470 | 0.9372 | 0.9848 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3