--- pipeline_tag: token-classification tags: - named-entity-recognition - sequence-tagger-model widget: - text: A nevem Amadeus Wolfgang és Berlinben élek inference: parameters: aggregation_strategy: simple grouped_entities: true language: - hu --- xlm-roberta model trained on [hungarian ner](https://flairnlp.github.io/docs/tutorial-training/how-to-load-prepared-dataset) dataset from flair | Test metric | Results | |-------------------------|--------------------------| | test_f1_mac_hu_ner | 0.9962009787559509 | | test_loss_hu_ner | 0.019755737856030464 | | test_prec_mac_hu_ner | 0.9692726135253906 | | test_rec_mac_hu_ner | 0.9708725810050964 | ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner") ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner") nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") example = "A nevem Amadeus Wolfgang és Berlinben élek" ner_results = nlp(example) print(ner_results) ```