Henry Kenlay commited on
Commit
71b696a
·
verified ·
1 Parent(s): 45585da

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - antibody language model
4
+ - antibody
5
+ base_model: Exscientia/IgT5_unpaired
6
+ license: mit
7
+ ---
8
+
9
+ # IgT5 model
10
+
11
+ Pretrained model on protein and antibody sequences using a masked language modeling (MLM) objective. It was introduced in the paper [Large scale paired antibody language models](https://arxiv.org/abs/2403.17889).
12
+
13
+ The model is finetuned from IgT5-unpaired using paired antibody sequences from paired OAS.
14
+
15
+ # Use
16
+
17
+ The encoder part of the model and tokeniser can be loaded using the `transformers` library
18
+
19
+ ```python
20
+ from transformers import T5EncoderModel, T5Tokenizer
21
+
22
+ tokeniser = T5Tokenizer.from_pretrained("Exscientia/IgT5", do_lower_case=False)
23
+ model = T5EncoderModel.from_pretrained("Exscientia/IgT5")
24
+ ```
25
+
26
+ The tokeniser is used to prepare batch inputs
27
+ ```python
28
+ # heavy chain sequences
29
+ sequences_heavy = [
30
+ "VQLAQSGSELRKPGASVKVSCDTSGHSFTSNAIHWVRQAPGQGLEWMGWINTDTGTPTYAQGFTGRFVFSLDTSARTAYLQISSLKADDTAVFYCARERDYSDYFFDYWGQGTLVTVSS",
31
+ "QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMYWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRTEDTAVYYCASGSDYGDYLLVYWGQGTLVTVSS"
32
+ ]
33
+
34
+ # light chain sequences
35
+ sequences_light = [
36
+ "EVVMTQSPASLSVSPGERATLSCRARASLGISTDLAWYQQRPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDSAVYYCQQYSNWPLTFGGGTKVEIK",
37
+ "ALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVSNRFSGSKSGNTASLTISGLQSEDEADYYCNSLTSISTWVFGGGTKLTVL"
38
+ ]
39
+
40
+ # The tokeniser expects input of the form ["V Q ... S S </s> E V ... I K", ...]
41
+ paired_sequences = []
42
+ for sequence_heavy, sequence_light in zip(sequences_heavy, sequences_light):
43
+ paired_sequences.append(' '.join(sequence_heavy)+' </s> '+' '.join(sequence_light))
44
+
45
+ tokens = tokeniser.batch_encode_plus(
46
+ paired_sequences,
47
+ add_special_tokens=True,
48
+ pad_to_max_length=True,
49
+ return_tensors="pt",
50
+ return_special_tokens_mask=True
51
+ )
52
+ ```
53
+
54
+ Note that the tokeniser adds a `</s>` token at the end of each paired sequence and pads using the `<pad>` token. For example a batch containing sequences `V Q L </s> E V V`, `Q V </s> A L` will be tokenised to `V Q L </s> E V V </S>` and `Q V </s> A L </s> <pad> <pad>`.
55
+
56
+
57
+ Sequence embeddings are generated by feeding tokens through the model
58
+
59
+ ```python
60
+ output = model(
61
+ input_ids=tokens['input_ids'],
62
+ attention_mask=tokens['attention_mask']
63
+ )
64
+
65
+ residue_embeddings = output.last_hidden_state
66
+ ```
67
+
68
+ To obtain a sequence representation, the residue tokens can be averaged over like so
69
+
70
+ ```python
71
+ import torch
72
+
73
+ # mask special tokens before summing over embeddings
74
+ residue_embeddings[tokens["special_tokens_mask"] == 1] = 0
75
+ sequence_embeddings_sum = residue_embeddings.sum(1)
76
+
77
+ # average embedding by dividing sum by sequence lengths
78
+ sequence_lengths = torch.sum(tokens["special_tokens_mask"] == 0, dim=1)
79
+ sequence_embeddings = sequence_embeddings_sum / sequence_lengths.unsqueeze(1)
80
+ ```