metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- Hadith
- Islam
- Arabic
license: apache-2.0
datasets:
- FDSRashid/hadith_info
language:
- ar
library_name: sentence-transformers
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca
QulBERT
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["أنا أحب القراءة والكتابة.", "الطيور تحلق في السماء."]
model = SentenceTransformer('FDSRashid/QulBERT')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["أنا أحب القراءة والكتابة.", "الطيور تحلق في السماء."]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('FDSRashid/QulBERT')
model = AutoModel.from_pretrained('FDSRashid/QulBERT')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
Training
Citing & Authors
Author : Ferdaws Rashid