File size: 8,347 Bytes
ff19902 7dcc89a 5c08785 7dcc89a ff19902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
tags:
- generated_from_trainer
datasets:
- all
metrics:
- precision
- recall
- f1
model-index:
- name: twitter-xlmr-clip-finetuned-all-123
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-xlmr-clip-finetuned-all-123
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) on the all dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7405
- Precision: 0.6431
- Recall: 0.6554
- F1: 0.6401
## Model description
More information needed
## Usage
To use the model use the following script.
Kindly refer to the [app.py](https://huggingface.co/spaces/FFZG-cleopatra/M2SA-demo-multimodal/blob/main/app.py) for the Transform and VisionTextDualEncoderModel class definitions.
```
import torch
import torch.nn as nn
import torchvision
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
from torchvision.transforms.functional import InterpolationMode
from torchvision import transforms
from torchvision.io import ImageReadMode, read_image
from transformers import CLIPModel, AutoModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_model
from datasets import load_dataset, load_metric
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoModelForSequenceClassification,
AutoTokenizer,
logging,
)
id2label = {0: "negative", 1: "neutral", 2: "positive"}
label2id = {"negative": 0, "neutral": 1, "positive": 2}
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual")
model = VisionTextDualEncoderModel(num_classes=3)
config = model.vision_encoder.config
# https://huggingface.co/FFZG-cleopatra/M2SA/blob/main/model.safetensors
sf_filename = hf_hub_download("FFZG-cleopatra/M2SA", filename="model.safetensors")
load_model(model, sf_filename)
image_processor = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
def predict_sentiment(text, image):
# read the image file
image = read_image(image, mode=ImageReadMode.RGB)
text_inputs = tokenizer(
text,
max_length=512,
padding="max_length",
truncation=True,
return_tensors="pt"
)
image_transformations = Transform(
config.vision_config.image_size,
image_processor.image_mean,
image_processor.image_std,
)
image_transformations = torch.jit.script(image_transformations)
pixel_values = image_transformations(image)
text_inputs["pixel_values"] = pixel_values.unsqueeze(0)
prediction = None
with torch.no_grad():
outputs = model(**text_inputs)
print(outputs)
prediction = np.argmax(outputs["logits"], axis=-1)
print(id2label[prediction[0].item()])
return id2label[prediction[0].item()]
text = "I feel good today"
image = "link-to-image"
predict_sentiment(text, image)
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 123
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 0.6444 | 0.06 | 500 | 0.8771 | 0.6905 | 0.4537 | 0.4197 |
| 0.5499 | 0.12 | 1000 | 0.8167 | 0.7197 | 0.4260 | 0.4117 |
| 0.5357 | 0.18 | 1500 | 0.8084 | 0.7263 | 0.4696 | 0.4424 |
| 0.5175 | 0.24 | 2000 | 0.8704 | 0.6666 | 0.4266 | 0.3717 |
| 0.5285 | 0.3 | 2500 | 0.9067 | 0.7529 | 0.4565 | 0.4221 |
| 0.5081 | 0.36 | 3000 | 0.7414 | 0.7655 | 0.6114 | 0.6356 |
| 0.506 | 0.42 | 3500 | 0.8713 | 0.5830 | 0.6591 | 0.5786 |
| 0.5049 | 0.48 | 4000 | 0.7514 | 0.5551 | 0.4568 | 0.4464 |
| 0.4999 | 0.54 | 4500 | 0.7584 | 0.6519 | 0.5502 | 0.5767 |
| 0.507 | 0.6 | 5000 | 0.8072 | 0.6479 | 0.5626 | 0.5636 |
| 0.5048 | 0.66 | 5500 | 0.8080 | 0.6260 | 0.5725 | 0.5730 |
| 0.4907 | 0.72 | 6000 | 0.7966 | 0.6976 | 0.5138 | 0.5224 |
| 0.493 | 0.78 | 6500 | 0.8193 | 0.7099 | 0.4949 | 0.4922 |
| 0.4668 | 0.84 | 7000 | 0.7502 | 0.6282 | 0.6942 | 0.6501 |
| 0.4717 | 0.9 | 7500 | 0.7636 | 0.6372 | 0.5109 | 0.5191 |
| 0.4774 | 0.96 | 8000 | 0.7652 | 0.7513 | 0.5360 | 0.5587 |
| 0.4676 | 1.02 | 8500 | 0.8482 | 0.6372 | 0.5918 | 0.5836 |
| 0.4361 | 1.08 | 9000 | 0.7456 | 0.6687 | 0.5177 | 0.5175 |
| 0.4536 | 1.14 | 9500 | 0.8449 | 0.7363 | 0.5160 | 0.5156 |
| 0.4277 | 1.2 | 10000 | 0.8648 | 0.6382 | 0.5247 | 0.5173 |
| 0.4444 | 1.26 | 10500 | 0.8723 | 0.5871 | 0.6622 | 0.5959 |
| 0.4269 | 1.32 | 11000 | 0.7856 | 0.6151 | 0.5521 | 0.5526 |
| 0.4322 | 1.38 | 11500 | 0.7405 | 0.6431 | 0.6554 | 0.6401 |
| 0.4435 | 1.44 | 12000 | 0.7682 | 0.6568 | 0.5751 | 0.5923 |
| 0.4429 | 1.5 | 12500 | 0.8824 | 0.5956 | 0.6006 | 0.5545 |
| 0.4381 | 1.56 | 13000 | 0.7879 | 0.4457 | 0.4727 | 0.4395 |
| 0.4389 | 1.62 | 13500 | 0.7555 | 0.6260 | 0.6984 | 0.6502 |
| 0.4529 | 1.68 | 14000 | 0.7981 | 0.6621 | 0.5546 | 0.5663 |
| 0.4509 | 1.74 | 14500 | 0.7827 | 0.6160 | 0.6321 | 0.6172 |
| 0.4413 | 1.8 | 15000 | 0.7895 | 0.6381 | 0.6357 | 0.6285 |
| 0.4198 | 1.86 | 15500 | 0.8345 | 0.5940 | 0.5526 | 0.5602 |
| 0.4415 | 1.92 | 16000 | 0.8746 | 0.6615 | 0.6612 | 0.6459 |
| 0.443 | 1.98 | 16500 | 0.8155 | 0.6516 | 0.5265 | 0.5352 |
| 0.4068 | 2.04 | 17000 | 0.7642 | 0.5838 | 0.6220 | 0.5975 |
| 0.3905 | 2.1 | 17500 | 0.7929 | 0.6720 | 0.5555 | 0.5740 |
| 0.3969 | 2.16 | 18000 | 0.8949 | 0.5330 | 0.4771 | 0.4687 |
| 0.3841 | 2.22 | 18500 | 0.9233 | 0.6028 | 0.5410 | 0.5492 |
| 0.4031 | 2.28 | 19000 | 0.7720 | 0.6089 | 0.5719 | 0.5776 |
| 0.3878 | 2.34 | 19500 | 0.9046 | 0.6265 | 0.5358 | 0.5318 |
| 0.4001 | 2.41 | 20000 | 0.8451 | 0.6960 | 0.5622 | 0.5761 |
| 0.3997 | 2.47 | 20500 | 0.8964 | 0.6170 | 0.5665 | 0.5541 |
| 0.3945 | 2.53 | 21000 | 0.8001 | 0.5553 | 0.5180 | 0.5195 |
| 0.4005 | 2.59 | 21500 | 0.8357 | 0.5519 | 0.5100 | 0.5170 |
| 0.3907 | 2.65 | 22000 | 0.8017 | 0.5884 | 0.5409 | 0.5552 |
| 0.3858 | 2.71 | 22500 | 0.8283 | 0.6036 | 0.5792 | 0.5862 |
| 0.3973 | 2.77 | 23000 | 0.9024 | 0.5770 | 0.5665 | 0.5393 |
| 0.3969 | 2.83 | 23500 | 0.8341 | 0.5642 | 0.5528 | 0.5558 |
| 0.3911 | 2.89 | 24000 | 0.8966 | 0.6045 | 0.5088 | 0.5070 |
| 0.3856 | 2.95 | 24500 | 0.8349 | 0.6021 | 0.5586 | 0.5689 |
| 0.3961 | 3.01 | 25000 | 0.9364 | 0.6119 | 0.5412 | 0.5585 |
| 0.3301 | 3.07 | 25500 | 0.9542 | 0.5757 | 0.6084 | 0.5813 |
| 0.3385 | 3.13 | 26000 | 1.0137 | 0.5563 | 0.5294 | 0.5346 |
| 0.3475 | 3.19 | 26500 | 0.9311 | 0.6359 | 0.5675 | 0.5822 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|