File size: 2,096 Bytes
cefd6d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
language:
- fr
license: mit
base_model: bofenghuang/whisper-large-v3-french
tags:
- generated_from_trainer
datasets:
- PraxySante/PxCorpus-PxSLU
metrics:
- wer
model-index:
- name: Whisper Large v3 French PxCorpus - Fine-tuning test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PxCorpus PxSLU
type: PraxySante/PxCorpus-PxSLU
args: 'config: fr, split: test'
metrics:
- name: Wer
type: wer
value: 4.112554112554113
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v3 French PxCorpus - Fine-tuning test
This model is a fine-tuned version of [bofenghuang/whisper-large-v3-french](https://huggingface.co/bofenghuang/whisper-large-v3-french) on the PxCorpus PxSLU dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1903
- Wer: 4.1126
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.0016 | 8.1967 | 1000 | 0.1864 | 5.1948 |
| 0.0003 | 16.3934 | 2000 | 0.1773 | 5.1948 |
| 0.0001 | 24.5902 | 3000 | 0.1860 | 4.1126 |
| 0.0 | 32.7869 | 4000 | 0.1903 | 4.1126 |
### Framework versions
- Transformers 4.44.1
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|