--- library_name: transformers language: - fr license: mit base_model: bofenghuang/whisper-large-v3-french tags: - generated_from_trainer datasets: - PraxySante/PxCorpus-PxSLU metrics: - wer model-index: - name: Whisper Large v3 French PxCorpus - Fine-tuning test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PxCorpus PxSLU type: PraxySante/PxCorpus-PxSLU args: 'config: fr, split: test' metrics: - name: Wer type: wer value: 4.112554112554113 --- # Whisper Large v3 French PxCorpus - Fine-tuning test This model is a fine-tuned version of [bofenghuang/whisper-large-v3-french](https://huggingface.co/bofenghuang/whisper-large-v3-french) on the PxCorpus PxSLU dataset. It achieves the following results on the evaluation set: - Loss: 0.1903 - Wer: 4.1126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0016 | 8.1967 | 1000 | 0.1864 | 5.1948 | | 0.0003 | 16.3934 | 2000 | 0.1773 | 5.1948 | | 0.0001 | 24.5902 | 3000 | 0.1860 | 4.1126 | | 0.0 | 32.7869 | 4000 | 0.1903 | 4.1126 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1