FINGU-AI commited on
Commit
9dcfa96
·
verified ·
1 Parent(s): b8c2eda

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -14,13 +14,13 @@ language:
14
  - vi
15
  - id
16
  ---
17
- # FINGU-AI/Qwen2.5-32B-Instruct
18
 
19
  ## Overview
20
- `FINGU-AI/Qwen2.5-32B-Instruct` is a powerful causal language model designed for a variety of natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. This model is particularly useful for translating between Korean and Uzbek, as well as supporting other custom NLP tasks through flexible input.
21
 
22
  ## Model Details
23
- - **Model ID**: `FINGU-AI/Qwen2.5-32B-Instruct`
24
  - **Architecture**: Causal Language Model (LM)
25
  - **Parameters**: 32 billion
26
  - **Precision**: Torch BF16 for efficient GPU memory usage
@@ -42,7 +42,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
42
  import torch
43
 
44
  # Model and Tokenizer
45
- model_id = 'FINGU-AI/Qwen2.5-32B-Instruct'
46
  model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.bfloat16)
47
  tokenizer = AutoTokenizer.from_pretrained(model_id)
48
  model.to('cuda')
 
14
  - vi
15
  - id
16
  ---
17
+ # FINGU-AI/Qwen2.5-32B-Lora-HQ-e-1
18
 
19
  ## Overview
20
+ `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-1` is a powerful causal language model designed for a variety of natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. This model is particularly useful for translating between Korean and Uzbek, as well as supporting other custom NLP tasks through flexible input.
21
 
22
  ## Model Details
23
+ - **Model ID**: `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-1`
24
  - **Architecture**: Causal Language Model (LM)
25
  - **Parameters**: 32 billion
26
  - **Precision**: Torch BF16 for efficient GPU memory usage
 
42
  import torch
43
 
44
  # Model and Tokenizer
45
+ model_id = 'FINGU-AI/Qwen2.5-32B-Lora-HQ-e-1'
46
  model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.bfloat16)
47
  tokenizer = AutoTokenizer.from_pretrained(model_id)
48
  model.to('cuda')