File size: 1,807 Bytes
32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae 4299b9d 32fedae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
library_name: transformers
datasets:
- FiscalNote/billsum
language:
- en
pipeline_tag: summarization
---
# Model Card for Model ID
This model is a fine-tuned version of the T5-small model, enhanced with a LoRA (Low-Rank Adaptation) adapter. It has been specifically fine-tuned to summarize legal documents, focusing on California state bills.
## Model Details
Base Model: T5-small
Task: Legal Document Summarization (California State Bills)
LoRA Configuration:
r: 8
lora_alpha: 32
lora_dropout: 0.1
Dataset: "billsum", split="ca_test"
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Fatemeh Dalilian
- **Finetuned from model [optional]:** T5-small
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load the model and tokenizer
tokenizer = T5Tokenizer.from_pretrained("Fafadalilian/lora-adapter-t5_small_model_California_state_bill")
model = T5ForConditionalGeneration.from_pretrained("Fafadalilian/lora-adapter-t5_small_model_California_state_bill")
# Example input text
input_text = "summarize: [Insert California state bill text here]"
# Tokenize the input
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
# Generate summary
summary_ids = model.generate(inputs.input_ids, max_length=150, num_beams=2, length_penalty=2.0, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Summary:", summary)
|