File size: 2,847 Bytes
d47a638
 
 
 
 
 
 
 
 
 
e8eed26
 
 
 
8dbfd86
 
 
d47a638
 
 
 
 
 
 
e8eed26
d47a638
8630cd8
 
d47a638
 
 
e8eed26
 
cbf4a57
 
 
 
d47a638
 
e8eed26
cbf4a57
 
e8eed26
 
cbf4a57
 
 
e8eed26
d47a638
 
 
cbf4a57
 
 
 
 
 
 
 
d47a638
e8eed26
d47a638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8630cd8
 
 
d47a638
 
 
 
 
 
 
e8eed26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-yoruba-tweets-classifications
  results: []
datasets:
- shmuhammad/AfriSenti-twitter-sentiment
language:
- yo
pipeline_tag: text-classification
widget:
- test: Àti àwọn  wọ́n ń fi  ṣe yẹ̀yẹ́.  fiwọ́n sílẹ̀, ara  ń ta wọ́n
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-yoruba-tweets-classifications

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an [shmuhammad/AfriSenti-twitter-sentiment](https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment)
It achieves the following results on the evaluation set:
- Loss: 0.7641
- Accuracy: 0.6871

## Model description

This model is a fine-tuned version of the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) pre-trained model, specifically trained on the [shmuhammad/AfriSenti-twitter-sentiment](https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment) dataset focusing on Yoruba tweets. It aims to perform sentiment classification on Yoruba tweets.
## Key details:
- Type: Fine-tuned language model
- Base model: xlm-roberta-base
- Task: Yoruba tweet sentiment classification
- Dataset: shmuhammad/AfriSenti-twitter-sentiment (Yoruba subset)


## Intended uses:
- Classifying sentiment (positive, negative, neutral) on Yoruba tweets.
- Can be used as a starting point for further fine-tuning on specific Yoruba tweet classification tasks.

## Limitations:
- Trained on a limited dataset, potentially impacting performance on unseen data.
- Fine-tuned only for sentiment classification, not suitable for other tasks.
- Accuracy might not be optimal for all applications.


## Training and evaluation data

- train: Dataset({
        features: ['tweet', 'label'],
        num_rows: 8522
    })
- validation: Dataset({
        features: ['tweet', 'label'],
        num_rows: 2090
    })


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9621        | 1.0   | 1066 | 0.9099          | 0.6120   |
| 0.8269        | 2.0   | 2132 | 0.7536          | 0.6627   |
| 0.7239        | 3.0   | 3198 | 0.7641          | 0.6871   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1