File size: 2,847 Bytes
d47a638 e8eed26 8dbfd86 d47a638 e8eed26 d47a638 8630cd8 d47a638 e8eed26 cbf4a57 d47a638 e8eed26 cbf4a57 e8eed26 cbf4a57 e8eed26 d47a638 cbf4a57 d47a638 e8eed26 d47a638 8630cd8 d47a638 e8eed26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-yoruba-tweets-classifications
results: []
datasets:
- shmuhammad/AfriSenti-twitter-sentiment
language:
- yo
pipeline_tag: text-classification
widget:
- test: Àti àwọn tí wọ́n ń fi wá ṣe yẹ̀yẹ́. Ẹ fiwọ́n sílẹ̀, ara ló ń ta wọ́n
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-yoruba-tweets-classifications
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an [shmuhammad/AfriSenti-twitter-sentiment](https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment)
It achieves the following results on the evaluation set:
- Loss: 0.7641
- Accuracy: 0.6871
## Model description
This model is a fine-tuned version of the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) pre-trained model, specifically trained on the [shmuhammad/AfriSenti-twitter-sentiment](https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment) dataset focusing on Yoruba tweets. It aims to perform sentiment classification on Yoruba tweets.
## Key details:
- Type: Fine-tuned language model
- Base model: xlm-roberta-base
- Task: Yoruba tweet sentiment classification
- Dataset: shmuhammad/AfriSenti-twitter-sentiment (Yoruba subset)
## Intended uses:
- Classifying sentiment (positive, negative, neutral) on Yoruba tweets.
- Can be used as a starting point for further fine-tuning on specific Yoruba tweet classification tasks.
## Limitations:
- Trained on a limited dataset, potentially impacting performance on unseen data.
- Fine-tuned only for sentiment classification, not suitable for other tasks.
- Accuracy might not be optimal for all applications.
## Training and evaluation data
- train: Dataset({
features: ['tweet', 'label'],
num_rows: 8522
})
- validation: Dataset({
features: ['tweet', 'label'],
num_rows: 2090
})
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9621 | 1.0 | 1066 | 0.9099 | 0.6120 |
| 0.8269 | 2.0 | 2132 | 0.7536 | 0.6627 |
| 0.7239 | 3.0 | 3198 | 0.7641 | 0.6871 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |