Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1605.01 +/- 233.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70adf4ed0e1f3c61a6ebae9b2d0b361243af5e2bde036a29dce88664d276e68b
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbdd0c73490>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbdd0c73520>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbdd0c735b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbdd0c73640>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbdd0c736d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbdd0c73760>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbdd0c737f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbdd0c73880>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbdd0c73910>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbdd0c739a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbdd0c73a30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbdd0c73ac0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbdd0c6e980>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1685421356806946398,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACGnSb1P+G69T4shP8aPfj+BfQw/xbnEPmVnNL2LKfU9rjn4vRlnSD+RT58+iIELPyH1cz6NEMW+TxAGPnqxBb7IwUI/iyMAv7OtQ76L00U/aJ+bvjkW2z8X13i9SAO+v2jahL9C1Qo/QbcMP968iL+M+Dc+Nd1gP/5mOj7E1Bc/eT6Pvf/AgT/Keo6+9YIfPwQR7r5hCYO/WVABPWHpDD/8tYU9Tc/Qv+ZKCr5FtLa/JLf/PjL3f7+81y6/chXSPkdKPb5RE2o/d04Dv31MRMD1pXY/RQbsv0G3DD/evIi/NJ0xvg+bcb3zjiE/v0SzPwDx8j+ik72/p6BoP1f6J7+h+Oo9PIFsvxj8vT0OgQ1AcPCKP4iDIr/WuAQ/n/X9vlPTUj/mpli/8dE8P7o5ij+U4yK/L2mcv6Ub6b4EEBbAaNqEv0LVCj9Btww/3ryIvxNUU76Yy7s++RIGPxj8lz/94iK/5Sz+P6CBOz9aCBu/6zFNPTYvmD85Y5E/8hwmPh/EkL3K2Yu/ZCxEPi71CT5tDXc9R79LvyFsTj+sIT49g2Mgv13CKT/g/lq/0W6xPGjahL9C1Qo/QbcMP968iL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADXKck2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZrCKOwAAAAAjt/+/AAAAACm3kT0AAAAAtQ/zPwAAAAAXz6A9AAAAABxt8z8AAAAAlJfxvQAAAACCqNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5uCMtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAmo0L0AAAAA3kflvwAAAADNq+G9AAAAAEfE9z8AAAAAAxscvQAAAAA0Dfg/AAAAAAnyzjsAAAAACxHqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRDATYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2XIu9AAAAAPyC6r8AAAAAQRs0PQAAAAA64fE/AAAAAHW7gr0AAAAABrUAQAAAAAC3xBa9AAAAAKky/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD36xQzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbyHPOwAAAABYzfW/AAAAAIf9ibwAAAAAZ6wAQAAAAADmcfk9AAAAAFNY+z8AAAAALOK4PQAAAAD98Om/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyLe/Ho5iMAWyUTegDjAF0lEdAqan6O/+Kj3V9lChoBkdAm4JiPuG9H2gHTegDaAhHQKmtbwR5C4V1fZQoaAZHQJx7szUI9kloB03oA2gIR0CprsvmHP/rdX2UKGgGR0CcGxP3BYV7aAdN6ANoCEdAqbG2YplSTHV9lChoBkdAkYQ8IJJGv2gHTegDaAhHQKm2SZLIxQB1fZQoaAZHQJ07qig00nBoB03oA2gIR0Cpu2laKUFCdX2UKGgGR0Cb+HHxz7uVaAdN6ANoCEdAqb17zmOlwnV9lChoBkdAnYuU8ifQKWgHTegDaAhHQKnA0nqFAVx1fZQoaAZHQJyEsFiay8loB03oA2gIR0CpxScZDRdAdX2UKGgGR0Cco/oqCpWFaAdN6ANoCEdAqcinSH/LknV9lChoBkdAmrDyc5Ke1GgHTegDaAhHQKnJ+VM23rl1fZQoaAZHQJpwUXzlLe1oB03oA2gIR0CpzN04rBj4dX2UKGgGR0CbkGSWJJoTaAdN6ANoCEdAqdExVp9JBnV9lChoBkdAmUUZaaCtimgHTegDaAhHQKnVYSBbwBp1fZQoaAZHQJrjE6CDmKZoB03oA2gIR0Cp13pV0cOtdX2UKGgGR0CbYghrnDBNaAdN6ANoCEdAqdvrBO58SnV9lChoBkdAm6+muxKQJWgHTegDaAhHQKngQ8A7xNJ1fZQoaAZHQJzlH4ubqhVoB03oA2gIR0Cp47X7tRekdX2UKGgGR0Cb+klme18caAdN6ANoCEdAqeUOIMz/InV9lChoBkdAnSZSV8kUsWgHTegDaAhHQKnn5gF5fMR1fZQoaAZHQJxkMWM0gr9oB03oA2gIR0Cp7EVsUIszdX2UKGgGR0CXSrsRg7YDaAdN6ANoCEdAqe+q9ugpSnV9lChoBkdAmDUwzch1T2gHTegDaAhHQKnxknQY1pF1fZQoaAZHQJt8x6t1ZDBoB03oA2gIR0Cp9hd+5OJtdX2UKGgGR0CcymRR/EwWaAdN6ANoCEdAqfuAiaAnUnV9lChoBkdAmQ7PWYnfEWgHTegDaAhHQKn+8LjxTbZ1fZQoaAZHQJ0jMntv4udoB03oA2gIR0CqAEfhuO0cdX2UKGgGR0CZQIwiaAnVaAdN6ANoCEdAqgNCWqtHQXV9lChoBkdAmzToA80UGmgHTegDaAhHQKoHn1WbPQh1fZQoaAZHQJkjs+eOGTNoB03oA2gIR0CqCxBC2MKkdX2UKGgGR0CaQia2nbZfaAdN6ANoCEdAqgx1WsA/93V9lChoBkdAmrjpz90ihWgHTegDaAhHQKoQkhbnoxJ1fZQoaAZHQJvTGBJ7LMdoB03oA2gIR0CqFuVrIo3KdX2UKGgGR0CZBkLkjopyaAdN6ANoCEdAqhpP2/SH/XV9lChoBkdAm8/X7Hhjv2gHTegDaAhHQKobqL5RCQd1fZQoaAZHQJ0ZGVbA1vVoB03oA2gIR0CqHokmICU5dX2UKGgGR0CdLqrKNhmYaAdN6ANoCEdAqiLenbZezHV9lChoBkdAnJTmPo3aSWgHTegDaAhHQKonBJEpiJB1fZQoaAZHQJvb1TWGyopoB03oA2gIR0CqKREFGG21dX2UKGgGR0CcSjhouf29aAdN6ANoCEdAqi3tedCmdnV9lChoBkdAna+nY6GQCGgHTegDaAhHQKo1KF/QSjB1fZQoaAZHQJtJrM9r435oB03oA2gIR0CqOPUoKD02dX2UKGgGR0CcSjztTkyUaAdN6ANoCEdAqjpTASFoMHV9lChoBkdAmkSkOuq3mWgHTegDaAhHQKo9SM+eOGV1fZQoaAZHQJzNdM+NcW1oB03oA2gIR0CqQaYx1xKhdX2UKGgGR0CdD9XV9Wp7aAdN6ANoCEdAqkUZa7mMfnV9lChoBkdAj96GIj4YamgHTegDaAhHQKpGet3fQ8h1fZQoaAZHQJtGRuCPIXFoB03oA2gIR0CqSW5Xlr/LdX2UKGgGR0CZ5E4z7/GVaAdN6ANoCEdAqk+bnA6+4HV9lChoBkdAm169Htnf22gHTegDaAhHQKpUQ+jdpIt1fZQoaAZHQJyrGwbEP2BoB03oA2gIR0CqVaafzz3AdX2UKGgGR0CYu3c3l0YCaAdN6ANoCEdAqliZHAh0Q3V9lChoBkdAnFpw8GLUC2gHTegDaAhHQKpdBhVlwtJ1fZQoaAZHQJjc4qe9SMtoB03oA2gIR0CqYJebExZddX2UKGgGR0CbvaCJXQt0aAdN6ANoCEdAqmH4LmZE2HV9lChoBkdAnSvuzt1IRWgHTegDaAhHQKpk691U2k11fZQoaAZHQJwPBlbu+h5oB03oA2gIR0CqalngYP5IdX2UKGgGR0CcF8q3EyckaAdN6ANoCEdAqm/j5qM3qHV9lChoBkdAm7MW1UlzEWgHTegDaAhHQKpxf+F10T11fZQoaAZHQJvMglE7W/doB03oA2gIR0CqdIEPlMh6dX2UKGgGR0CU8JPppvgnaAdN6ANoCEdAqnkDA1vVE3V9lChoBkdAnu9XIIWxhWgHTegDaAhHQKp8kLw4KhN1fZQoaAZHQJumF/b0voNoB03oA2gIR0CqfexxtHhCdX2UKGgGR0Cd3y6Z6UqyaAdN6ANoCEdAqoDab+cYqHV9lChoBkdAnMm9pEhJRWgHTegDaAhHQKqFggCfYjB1fZQoaAZHQJwD17pmmLtoB03oA2gIR0CqiqhCUorndX2UKGgGR0Cak1y+pOvdaAdN6ANoCEdAqoy8NDtw73V9lChoBkdAlfT1WOp84WgHTegDaAhHQKqP3cPe54J1fZQoaAZHQJuzZDb8FZBoB03oA2gIR0CqlDg+Y+jedX2UKGgGR0CbyR4Ia99MaAdN6ANoCEdAqpeZ0CA+ZHV9lChoBkdAnZbve+Eh7mgHTegDaAhHQKqY8fFJg9h1fZQoaAZHQJtTUDZDiOxoB03oA2gIR0Cqm9mDDjzadX2UKGgGR0CdjtscQyylaAdN6ANoCEdAqqA3K+zt1XV9lChoBkdAnSdxBE8aGmgHTegDaAhHQKqkoZRbbDd1fZQoaAZHQJ4hiojv/ipoB03oA2gIR0CqprM6JZW8dX2UKGgGR0Cbls8OTaCdaAdN6ANoCEdAqqroZCOWB3V9lChoBkdAm4VeRLbpNmgHTegDaAhHQKqvRCrLhaV1fZQoaAZHQJ0ZOKziS7poB03oA2gIR0Cqsqt6ol2NdX2UKGgGR0CeSUkJKJ2uaAdN6ANoCEdAqrQNMRHww3V9lChoBkdAnBmr2xptamgHTegDaAhHQKq3ACJXQt11fZQoaAZHQJtRdmnO0LNoB03oA2gIR0Cqu1G+CbtrdX2UKGgGR0CcoVA44p+daAdN6ANoCEdAqr7mReTmn3V9lChoBkdAl+yAHmig02gHTegDaAhHQKrA3TMJQch1fZQoaAZHQJrlWhCdBjZoB03oA2gIR0CqxVmTC+DfdX2UKGgGR0Cd22+AVfu1aAdN6ANoCEdAqsprSG8Em3V9lChoBkdAnFxrPY4ACGgHTegDaAhHQKrNzdFfAsV1fZQoaAZHQJyB1oCdSVJoB03oA2gIR0CqzyT544ZNdX2UKGgGR0CceU5qdpZfaAdN6ANoCEdAqtH+6ClJpXV9lChoBkdAnGr7f51vEWgHTegDaAhHQKrWQEkjX4F1fZQoaAZHQJ1lZfPX05FoB03oA2gIR0Cq2Y4c/+sHdX2UKGgGR0CdKnkj5bhWaAdN6ANoCEdAqtrnb212JXV9lChoBkdAmtJDAaef7WgHTegDaAhHQKrfBzAeq711fZQoaAZHQJtGP2OAAhloB03oA2gIR0Cq5TpFCswMdX2UKGgGR0CeexeLvTgEaAdN6ANoCEdAquifXiBGx3V9lChoBkdAnl3/YSQHRmgHTegDaAhHQKrqA5wwTM91fZQoaAZHQJ2mE57w8W9oB03oA2gIR0Cq7Qke6qbSdX2UKGgGR0Cdhdkyk9EDaAdN6ANoCEdAqvFmKyfL93V9lChoBkdAmlCoY3vQW2gHTegDaAhHQKr03gTAWSF1fZQoaAZHQJ0Qf+717IFoB03oA2gIR0Cq9jPZqVQidX2UKGgGR0CdwX2IO6NEaAdN6ANoCEdAqvmA2S+xnnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d457ca8ea8a5c30728a14871ac3a9c804c435bef5fe0c055ede4904397d0936
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10edeafd16b7e1da8a760d9f5289f295bd0c6c01d8ba2e4ace674424dc7a5b43
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbdd0c73490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbdd0c73520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbdd0c735b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbdd0c73640>", "_build": "<function ActorCriticPolicy._build at 0x7fbdd0c736d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbdd0c73760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbdd0c737f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbdd0c73880>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbdd0c73910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbdd0c739a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbdd0c73a30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbdd0c73ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbdd0c6e980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685421356806946398, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACGnSb1P+G69T4shP8aPfj+BfQw/xbnEPmVnNL2LKfU9rjn4vRlnSD+RT58+iIELPyH1cz6NEMW+TxAGPnqxBb7IwUI/iyMAv7OtQ76L00U/aJ+bvjkW2z8X13i9SAO+v2jahL9C1Qo/QbcMP968iL+M+Dc+Nd1gP/5mOj7E1Bc/eT6Pvf/AgT/Keo6+9YIfPwQR7r5hCYO/WVABPWHpDD/8tYU9Tc/Qv+ZKCr5FtLa/JLf/PjL3f7+81y6/chXSPkdKPb5RE2o/d04Dv31MRMD1pXY/RQbsv0G3DD/evIi/NJ0xvg+bcb3zjiE/v0SzPwDx8j+ik72/p6BoP1f6J7+h+Oo9PIFsvxj8vT0OgQ1AcPCKP4iDIr/WuAQ/n/X9vlPTUj/mpli/8dE8P7o5ij+U4yK/L2mcv6Ub6b4EEBbAaNqEv0LVCj9Btww/3ryIvxNUU76Yy7s++RIGPxj8lz/94iK/5Sz+P6CBOz9aCBu/6zFNPTYvmD85Y5E/8hwmPh/EkL3K2Yu/ZCxEPi71CT5tDXc9R79LvyFsTj+sIT49g2Mgv13CKT/g/lq/0W6xPGjahL9C1Qo/QbcMP968iL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADXKck2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZrCKOwAAAAAjt/+/AAAAACm3kT0AAAAAtQ/zPwAAAAAXz6A9AAAAABxt8z8AAAAAlJfxvQAAAACCqNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5uCMtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAmo0L0AAAAA3kflvwAAAADNq+G9AAAAAEfE9z8AAAAAAxscvQAAAAA0Dfg/AAAAAAnyzjsAAAAACxHqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRDATYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2XIu9AAAAAPyC6r8AAAAAQRs0PQAAAAA64fE/AAAAAHW7gr0AAAAABrUAQAAAAAC3xBa9AAAAAKky/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD36xQzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbyHPOwAAAABYzfW/AAAAAIf9ibwAAAAAZ6wAQAAAAADmcfk9AAAAAFNY+z8AAAAALOK4PQAAAAD98Om/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyLe/Ho5iMAWyUTegDjAF0lEdAqan6O/+Kj3V9lChoBkdAm4JiPuG9H2gHTegDaAhHQKmtbwR5C4V1fZQoaAZHQJx7szUI9kloB03oA2gIR0CprsvmHP/rdX2UKGgGR0CcGxP3BYV7aAdN6ANoCEdAqbG2YplSTHV9lChoBkdAkYQ8IJJGv2gHTegDaAhHQKm2SZLIxQB1fZQoaAZHQJ07qig00nBoB03oA2gIR0Cpu2laKUFCdX2UKGgGR0Cb+HHxz7uVaAdN6ANoCEdAqb17zmOlwnV9lChoBkdAnYuU8ifQKWgHTegDaAhHQKnA0nqFAVx1fZQoaAZHQJyEsFiay8loB03oA2gIR0CpxScZDRdAdX2UKGgGR0Cco/oqCpWFaAdN6ANoCEdAqcinSH/LknV9lChoBkdAmrDyc5Ke1GgHTegDaAhHQKnJ+VM23rl1fZQoaAZHQJpwUXzlLe1oB03oA2gIR0CpzN04rBj4dX2UKGgGR0CbkGSWJJoTaAdN6ANoCEdAqdExVp9JBnV9lChoBkdAmUUZaaCtimgHTegDaAhHQKnVYSBbwBp1fZQoaAZHQJrjE6CDmKZoB03oA2gIR0Cp13pV0cOtdX2UKGgGR0CbYghrnDBNaAdN6ANoCEdAqdvrBO58SnV9lChoBkdAm6+muxKQJWgHTegDaAhHQKngQ8A7xNJ1fZQoaAZHQJzlH4ubqhVoB03oA2gIR0Cp47X7tRekdX2UKGgGR0Cb+klme18caAdN6ANoCEdAqeUOIMz/InV9lChoBkdAnSZSV8kUsWgHTegDaAhHQKnn5gF5fMR1fZQoaAZHQJxkMWM0gr9oB03oA2gIR0Cp7EVsUIszdX2UKGgGR0CXSrsRg7YDaAdN6ANoCEdAqe+q9ugpSnV9lChoBkdAmDUwzch1T2gHTegDaAhHQKnxknQY1pF1fZQoaAZHQJt8x6t1ZDBoB03oA2gIR0Cp9hd+5OJtdX2UKGgGR0CcymRR/EwWaAdN6ANoCEdAqfuAiaAnUnV9lChoBkdAmQ7PWYnfEWgHTegDaAhHQKn+8LjxTbZ1fZQoaAZHQJ0jMntv4udoB03oA2gIR0CqAEfhuO0cdX2UKGgGR0CZQIwiaAnVaAdN6ANoCEdAqgNCWqtHQXV9lChoBkdAmzToA80UGmgHTegDaAhHQKoHn1WbPQh1fZQoaAZHQJkjs+eOGTNoB03oA2gIR0CqCxBC2MKkdX2UKGgGR0CaQia2nbZfaAdN6ANoCEdAqgx1WsA/93V9lChoBkdAmrjpz90ihWgHTegDaAhHQKoQkhbnoxJ1fZQoaAZHQJvTGBJ7LMdoB03oA2gIR0CqFuVrIo3KdX2UKGgGR0CZBkLkjopyaAdN6ANoCEdAqhpP2/SH/XV9lChoBkdAm8/X7Hhjv2gHTegDaAhHQKobqL5RCQd1fZQoaAZHQJ0ZGVbA1vVoB03oA2gIR0CqHokmICU5dX2UKGgGR0CdLqrKNhmYaAdN6ANoCEdAqiLenbZezHV9lChoBkdAnJTmPo3aSWgHTegDaAhHQKonBJEpiJB1fZQoaAZHQJvb1TWGyopoB03oA2gIR0CqKREFGG21dX2UKGgGR0CcSjhouf29aAdN6ANoCEdAqi3tedCmdnV9lChoBkdAna+nY6GQCGgHTegDaAhHQKo1KF/QSjB1fZQoaAZHQJtJrM9r435oB03oA2gIR0CqOPUoKD02dX2UKGgGR0CcSjztTkyUaAdN6ANoCEdAqjpTASFoMHV9lChoBkdAmkSkOuq3mWgHTegDaAhHQKo9SM+eOGV1fZQoaAZHQJzNdM+NcW1oB03oA2gIR0CqQaYx1xKhdX2UKGgGR0CdD9XV9Wp7aAdN6ANoCEdAqkUZa7mMfnV9lChoBkdAj96GIj4YamgHTegDaAhHQKpGet3fQ8h1fZQoaAZHQJtGRuCPIXFoB03oA2gIR0CqSW5Xlr/LdX2UKGgGR0CZ5E4z7/GVaAdN6ANoCEdAqk+bnA6+4HV9lChoBkdAm169Htnf22gHTegDaAhHQKpUQ+jdpIt1fZQoaAZHQJyrGwbEP2BoB03oA2gIR0CqVaafzz3AdX2UKGgGR0CYu3c3l0YCaAdN6ANoCEdAqliZHAh0Q3V9lChoBkdAnFpw8GLUC2gHTegDaAhHQKpdBhVlwtJ1fZQoaAZHQJjc4qe9SMtoB03oA2gIR0CqYJebExZddX2UKGgGR0CbvaCJXQt0aAdN6ANoCEdAqmH4LmZE2HV9lChoBkdAnSvuzt1IRWgHTegDaAhHQKpk691U2k11fZQoaAZHQJwPBlbu+h5oB03oA2gIR0CqalngYP5IdX2UKGgGR0CcF8q3EyckaAdN6ANoCEdAqm/j5qM3qHV9lChoBkdAm7MW1UlzEWgHTegDaAhHQKpxf+F10T11fZQoaAZHQJvMglE7W/doB03oA2gIR0CqdIEPlMh6dX2UKGgGR0CU8JPppvgnaAdN6ANoCEdAqnkDA1vVE3V9lChoBkdAnu9XIIWxhWgHTegDaAhHQKp8kLw4KhN1fZQoaAZHQJumF/b0voNoB03oA2gIR0CqfexxtHhCdX2UKGgGR0Cd3y6Z6UqyaAdN6ANoCEdAqoDab+cYqHV9lChoBkdAnMm9pEhJRWgHTegDaAhHQKqFggCfYjB1fZQoaAZHQJwD17pmmLtoB03oA2gIR0CqiqhCUorndX2UKGgGR0Cak1y+pOvdaAdN6ANoCEdAqoy8NDtw73V9lChoBkdAlfT1WOp84WgHTegDaAhHQKqP3cPe54J1fZQoaAZHQJuzZDb8FZBoB03oA2gIR0CqlDg+Y+jedX2UKGgGR0CbyR4Ia99MaAdN6ANoCEdAqpeZ0CA+ZHV9lChoBkdAnZbve+Eh7mgHTegDaAhHQKqY8fFJg9h1fZQoaAZHQJtTUDZDiOxoB03oA2gIR0Cqm9mDDjzadX2UKGgGR0CdjtscQyylaAdN6ANoCEdAqqA3K+zt1XV9lChoBkdAnSdxBE8aGmgHTegDaAhHQKqkoZRbbDd1fZQoaAZHQJ4hiojv/ipoB03oA2gIR0CqprM6JZW8dX2UKGgGR0Cbls8OTaCdaAdN6ANoCEdAqqroZCOWB3V9lChoBkdAm4VeRLbpNmgHTegDaAhHQKqvRCrLhaV1fZQoaAZHQJ0ZOKziS7poB03oA2gIR0Cqsqt6ol2NdX2UKGgGR0CeSUkJKJ2uaAdN6ANoCEdAqrQNMRHww3V9lChoBkdAnBmr2xptamgHTegDaAhHQKq3ACJXQt11fZQoaAZHQJtRdmnO0LNoB03oA2gIR0Cqu1G+CbtrdX2UKGgGR0CcoVA44p+daAdN6ANoCEdAqr7mReTmn3V9lChoBkdAl+yAHmig02gHTegDaAhHQKrA3TMJQch1fZQoaAZHQJrlWhCdBjZoB03oA2gIR0CqxVmTC+DfdX2UKGgGR0Cd22+AVfu1aAdN6ANoCEdAqsprSG8Em3V9lChoBkdAnFxrPY4ACGgHTegDaAhHQKrNzdFfAsV1fZQoaAZHQJyB1oCdSVJoB03oA2gIR0CqzyT544ZNdX2UKGgGR0CceU5qdpZfaAdN6ANoCEdAqtH+6ClJpXV9lChoBkdAnGr7f51vEWgHTegDaAhHQKrWQEkjX4F1fZQoaAZHQJ1lZfPX05FoB03oA2gIR0Cq2Y4c/+sHdX2UKGgGR0CdKnkj5bhWaAdN6ANoCEdAqtrnb212JXV9lChoBkdAmtJDAaef7WgHTegDaAhHQKrfBzAeq711fZQoaAZHQJtGP2OAAhloB03oA2gIR0Cq5TpFCswMdX2UKGgGR0CeexeLvTgEaAdN6ANoCEdAquifXiBGx3V9lChoBkdAnl3/YSQHRmgHTegDaAhHQKrqA5wwTM91fZQoaAZHQJ2mE57w8W9oB03oA2gIR0Cq7Qke6qbSdX2UKGgGR0Cdhdkyk9EDaAdN6ANoCEdAqvFmKyfL93V9lChoBkdAmlCoY3vQW2gHTegDaAhHQKr03gTAWSF1fZQoaAZHQJ0Qf+717IFoB03oA2gIR0Cq9jPZqVQidX2UKGgGR0CdwX2IO6NEaAdN6ANoCEdAqvmA2S+xnnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:554c29a956025d4812f8070439f7b4a88425083a108b273152988300f7cbf2cc
|
3 |
+
size 1081992
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1605.0112180831609, "std_reward": 233.0792915101698, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T05:47:56.847329"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dde5c56c13a093b3ae13c46590c1135450343d1a441f536e8baf2209fee2cd81
|
3 |
+
size 2176
|