FarStryke21's picture
Unit 1 Assignment
df930b2 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73d45ee950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73d45ee9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73d45eea70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73d45eeb00>", "_build": "<function ActorCriticPolicy._build at 0x7f73d45eeb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f73d45eec20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f73d45eecb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73d45eed40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f73d45eedd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73d45eee60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73d45eeef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73d45eef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f73d45a4640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731650154753884322, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHO/gj1zuvg+4/xDvdIljr7xD449ErKPvQAAAAAAAAAApnmUvRkJhT+W5DG+U/oNv2365r3YVfO8AAAAAAAAAABVg6W+65hYP7Mxp77vm/G+WT/Wvml0tDsAAAAAAAAAAED9nL3DBUu6UmudM9Yc/y7Bqwk74TCnswAAgD8AAIA/WrBRPqepFT9gDlu+5D6kviDaCj60pb69AAAAAAAAAADmyJa963GkPxvPNb9qeyO/xNUSOiYtIb4AAAAAAAAAADMprD0PwgS8vt6BuwMIDjxwP2E9bpH+vAAAgD8AAAAAmgrHPAoxQLviObC7MKKEPNyPiDxgLGW9AACAPwAAgD9mD3497Piru9DwgrwWPos8mgcHvX3mbD0AAIA/AACAP7pLgL5Vv2M/5QJnvVxCCr/T/rW+OlwdPQAAAAAAAAAAM8lnvLi26D2Gp2y9s8EEvi1KFbyqCx09AAAAAAAAAACakLG8nSd6Pq8RKr7RNIm+iBfbvfgluz0AAAAAAAAAAPPvCD7BNUE+YIWrvl4PTL5HIDi9Qly6vQAAAAAAAAAApuKtvaScF7vgllY804KBPFoRmrw4GGE9AAAAAAAAgD/AvM69nV65Pxe/yb5fM3S+bh0nvgjnWr4AAAAAAAAAAE3mTj10YxI/5cV1vV/prr5kbfc8D2gJuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIi1bVz6rOMAWyUTRIBjAF0lEdAlKoXskY4yXV9lChoBkdAcZ166reZX2gHTSYBaAhHQJSrrmJWNm11fZQoaAZHQHHM+5OJtSBoB01RAWgIR0CUq7ll9SdfdX2UKGgGR0BwEox59mYjaAdNFAFoCEdAlKvnhGYrrnV9lChoBkdAct7aWHDaXmgHS+5oCEdAlKwuXAuZkXV9lChoBkdAbw4BczImxGgHTcwBaAhHQJStqu3c5811fZQoaAZHQG6Ye8PFvQ5oB02IAWgIR0CUrmB2wFC+dX2UKGgGR0ByFHQD3dsSaAdNLgFoCEdAlK8p3os7MnV9lChoBkdAcz0TYukDZGgHTRgBaAhHQJSvQy0rsjV1fZQoaAZHQHFzNe+mFaloB00oAWgIR0CUsFdqcmShdX2UKGgGR0BtxVATqSowaAdL92gIR0CUsPCL/CIldX2UKGgGR0BwFJ+w1R+CaAdNBQFoCEdAlLFd0/4ZdnV9lChoBkdAcpvQC0WuYGgHTS4BaAhHQJSx5rZamoB1fZQoaAZHQHAg+LR8c+9oB00oAWgIR0CUsgBjnV5KdX2UKGgGR0BuR1Wp6yB1aAdL92gIR0CUsibo8p1BdX2UKGgGR0BwkhZRsMy8aAdNGAFoCEdAlLNZHZsbenV9lChoBkdAcU6RMN+b3GgHTREBaAhHQJS1ZfgJkXl1fZQoaAZHQG7EaHKwIMVoB00hAWgIR0CUtdxAjY7JdX2UKGgGR0BxhC+6Ae7uaAdNHwFoCEdAlLZqur6tT3V9lChoBkdAcrKag2606mgHTTIBaAhHQJS2optrKvF1fZQoaAZHQFTW/X5FgD1oB03oA2gIR0CUt4SdOIqLdX2UKGgGR0BwcpXnyNGWaAdNDwFoCEdAlLejaTOgQHV9lChoBkdAbvyKiwjdHmgHS/RoCEdAlLhklNUOu3V9lChoBkdAcqRWYF7laWgHTRgBaAhHQJS4tnSOR1Z1fZQoaAZHQHCe4egctGxoB0v8aAhHQJS6ApazNUx1fZQoaAZHQG+rhS9/SYxoB00jAWgIR0CUuiE384xUdX2UKGgGR0Bww/FCLMs6aAdL+2gIR0CUur6EJ0GNdX2UKGgGR0BvKS3kPtlaaAdL62gIR0CUuywbEP1+dX2UKGgGR0Bx9IM6RyOraAdL8mgIR0CUvSuTibUgdX2UKGgGR0BxA2Zx7zClaAdNOAFoCEdAlL2OfqX4TXV9lChoBkdAcOHB0ZFXrGgHTSEBaAhHQJS9ma7VawF1fZQoaAZHQG6opMQEpy9oB004AWgIR0CUvmGtZFG5dX2UKGgGR0BxQZIqbz9TaAdNBQFoCEdAlMBV8LKFI3V9lChoBkdAcj83Td+G5GgHTREBaAhHQJTAb/bTMJR1fZQoaAZHQHAEEL2HtWxoB00EAWgIR0CUwNSaEzwddX2UKGgGR0Bw+3iZOSGKaAdL4mgIR0CUwVjmjj7zdX2UKGgGR0BxkQY/FBIGaAdNIQFoCEdAlMHMXm/34HV9lChoBkdAcGL9MsYl6mgHTSoBaAhHQJTVSJ+DvmZ1fZQoaAZHQHBkOkUKzAxoB00uAWgIR0CU1YH3Dej3dX2UKGgGR0BvgHai9IwuaAdL/2gIR0CU1fBoEjgRdX2UKGgGR0Bzg4hW5paiaAdNBAFoCEdAlNYna8Hv+nV9lChoBkdAcJ+DFZPl+2gHTTIBaAhHQJTWeKYRdyF1fZQoaAZHQG/Do4MnZ01oB00EAWgIR0CU1uJRwZO0dX2UKGgGR0Byi0nuy/sWaAdL2WgIR0CU11E9t/FzdX2UKGgGR0BzZJFH8TBZaAdNKAFoCEdAlNd6jJuEVXV9lChoBkdAcSR2vjfelGgHTRkBaAhHQJTZFlqagEl1fZQoaAZHQESBaCcwxnFoB0vgaAhHQJTZTtTkyUN1fZQoaAZHQHIRii7CiypoB00WAWgIR0CU2YmyPdVOdX2UKGgGR0BvNDqD9OynaAdL82gIR0CU2fLL6k6+dX2UKGgGR0Bt08YAKfFraAdNRQFoCEdAlNoaufVZtHV9lChoBkdASeVSAH3UQWgHS7loCEdAlNsK2BreqXV9lChoBkdAcLSU8mrsB2gHTRwBaAhHQJTbYIY3vQZ1fZQoaAZHQFO7qtozvZ1oB0u2aAhHQJTbiEUTL4h1fZQoaAZHQHIMPK2a2F5oB00lAWgIR0CU3CP3i704dX2UKGgGR0Bw00UuctoSaAdNFgFoCEdAlNwsqBmPHXV9lChoBkdAcMCcz67/XGgHTQYBaAhHQJTczFOwgT11fZQoaAZHQHDi6t1ZDAtoB00CAWgIR0CU3VXF98Z2dX2UKGgGR0BvrFOfukULaAdNIwFoCEdAlN1lWbPQfXV9lChoBkdAb02S3b212WgHS/RoCEdAlN2gcghbGHV9lChoBkdAcIzuGbkOqmgHTQUBaAhHQJTen1h9b5d1fZQoaAZHQHC5OU+s5n1oB00WAWgIR0CU3uFGoaUBdX2UKGgGR0BF+8JD3M6jaAdLzmgIR0CU33Vj7Q9idX2UKGgGR0A8XEZBLPD6aAdL4WgIR0CU35TX8O0+dX2UKGgGR0Bx3ttzjm0WaAdNBQFoCEdAlOBT0g8r7XV9lChoBkdAcSppUgjhUGgHTT0BaAhHQJTh42aUiY91fZQoaAZHQHDtVsLv1DloB00pAWgIR0CU4l0BOpKjdX2UKGgGR0BubAMc6vJSaAdNBAFoCEdAlOKfe1rqMXV9lChoBkdAbvsPhAGB4GgHTRABaAhHQJTip92HLzR1fZQoaAZHQHIHVnuiN85oB0v6aAhHQJTjL2USqVB1fZQoaAZHQHCCczMzMzNoB00NAWgIR0CU48H6/IsAdX2UKGgGR0BtsU1KoQ4CaAdNJwFoCEdAlOPi619fC3V9lChoBkdAcEOCzTnaFmgHS/1oCEdAlOSBvvSc9XV9lChoBkdAcgpiaAnUlWgHTSUBaAhHQJTlE1qFh5R1fZQoaAZHQG2xJVbRne1oB00aAWgIR0CU5V9q1w5vdX2UKGgGR0Bt0gIyCWeIaAdNEQFoCEdAlOVnHim2s3V9lChoBkdAceEbM5fdAWgHS+1oCEdAlOZV9roGIXV9lChoBkdAcen2UjcEeWgHTQ4BaAhHQJTmoTnJT2p1fZQoaAZHQHE/57ojfN1oB00jAWgIR0CU5uLAYYR/dX2UKGgGR0BxkSPZIxxlaAdNHAFoCEdAlOexkZrHl3V9lChoBkdAb8xJ6po9LmgHTQEBaAhHQJTnupiqhlF1fZQoaAZHQHJX8Ft8/lhoB0v7aAhHQJTpjb/Ot4l1fZQoaAZHQHFBNzS1E3NoB0v1aAhHQJTqaxzJZGN1fZQoaAZHQHN80T6BRQ9oB00eAWgIR0CU6nfG+9J0dX2UKGgGR0Bx3ZyeZof0aAdL4mgIR0CU6pHP/rB1dX2UKGgGR0BxSJMAWBSUaAdNGAFoCEdAlOsuZTho/XV9lChoBkdAchJI1+AmRmgHTSMBaAhHQJTroYm9g4R1fZQoaAZHQHBWHqmj0thoB00LAWgIR0CU7BVKPGQ0dX2UKGgGR0BwD216Vt4zaAdL5GgIR0CU7GbmlqJudX2UKGgGR0ByaVkwvg3taAdNAAFoCEdAlOy1wPy08nV9lChoBkdAb+dzkp7TlWgHTQ0BaAhHQJTuQTDfm9x1fZQoaAZHQG+Pb/n4fwJoB00QAWgIR0CU7medCmdidX2UKGgGR0BxvogW8AaOaAdL9GgIR0CU7zPoFFDwdX2UKGgGR0BwBE7CBPKuaAdNDQFoCEdAlO+1RceKbnV9lChoBkdAcFG+n62v0WgHTSEBaAhHQJTxaXZ5AyF1fZQoaAZHQHLeyMxXXAdoB00GAWgIR0CU8Y9TP0I1dX2UKGgGR0Bv8IgieNDMaAdNHAFoCEdAlPJhybQTmHV9lChoBkdAcssww0wai2gHS+1oCEdAlPLEHdGiH3V9lChoBkdAcotvlEJBxGgHS+1oCEdAlPOlJQLuyHV9lChoBkdAbvJGz8gp0GgHS/hoCEdAlPQPWUbDM3V9lChoBkdAbtUNXHR1HWgHTQcBaAhHQJT0oahpQDV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}