File size: 2,050 Bytes
9df70ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 10k-finetune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10k-finetune

This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3357
- Accuracy: 0.8730

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4093        | 0.33  | 20   | 0.4616          | 0.8115   |
| 0.2952        | 0.66  | 40   | 0.3984          | 0.8238   |
| 0.2775        | 0.99  | 60   | 0.3357          | 0.8730   |
| 0.1836        | 1.32  | 80   | 0.3674          | 0.8402   |
| 0.1772        | 1.65  | 100  | 0.3687          | 0.8361   |
| 0.1502        | 1.98  | 120  | 0.3730          | 0.8443   |
| 0.1245        | 2.31  | 140  | 0.3966          | 0.8402   |
| 0.1226        | 2.64  | 160  | 0.3719          | 0.8566   |
| 0.1166        | 2.98  | 180  | 0.3768          | 0.8484   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1