--- language: - "en" tags: - video license: apache-2.0 pipeline_tag: text-to-video library_name: diffusers ---

# FastMochi Model Card ## Model Details
Mochi Demo
Get 8X diffusion boost for Mochi with FastVideo
FastMochi is an accelerated [Mochi](https://huggingface.co/genmo/mochi-1-preview) model. It can sample high quality videos with 8 diffusion steps. That brings around 8X speed up compared to the original Mochu with 64 steps. - **Developed by**: [Hao AI Lab](https://hao-ai-lab.github.io/) - **License**: Apache-2.0 - **Distilled from**: [Mochi](https://huggingface.co/genmo/mochi-1-preview) - **Github Repository**: https://github.com/hao-ai-lab/FastVideo ## Usage - Clone [Fastvideo](https://github.com/hao-ai-lab/FastVideo) repository and follow the inference instructions in the README. - You can also run FastMochi using the official [Mochi repository](https://github.com/Tencent/HunyuanVideo) with the script below and this [compatible weight](https://huggingface.co/FastVideo/FastMochi).
Code ```python from genmo.mochi_preview.pipelines import ( DecoderModelFactory, DitModelFactory, MochiMultiGPUPipeline, T5ModelFactory, linear_quadratic_schedule, ) from genmo.lib.utils import save_video import os with open("prompt.txt", "r") as f: prompts = [line.rstrip() for line in f] pipeline = MochiMultiGPUPipeline( text_encoder_factory=T5ModelFactory(), world_size=4, dit_factory=DitModelFactory( model_path=f"weights/dit.safetensors", model_dtype="bf16" ), decoder_factory=DecoderModelFactory( model_path=f"weights/decoder.safetensors", ), ) # read prompt line by line from prompt.txt output_dir = "outputs" os.makedirs(output_dir, exist_ok=True) for i, prompt in enumerate(prompts): video = pipeline( height=480, width=848, num_frames=163, num_inference_steps=8, sigma_schedule=linear_quadratic_schedule(8, 0.1, 6), cfg_schedule=[1.5] * 8, batch_cfg=False, prompt=prompt, negative_prompt="", seed=12345, )[0] save_video(video, f"{output_dir}/output_{i}.mp4") ```
## Training details FastMochi is consistency distillated on the [MixKit](https://huggingface.co/datasets/LanguageBind/Open-Sora-Plan-v1.1.0/tree/main) dataset with the following hyperparamters: - Batch size: 32 - Resulotion: 480X848 - Num of frames: 169 - Train steps: 128 - GPUs: 16 - LR: 1e-6 - Loss: huber ## Evaluation We provide some qualitative comparisons between FastMochi 8 step inference v.s. the original Mochi with 8 step inference: | FastMochi 6 steps | Mochi 6 steps | | --- | --- | | ![FastMochi 8 step](assets/distilled/1.gif) | ![Mochi 8 step](assets/undistilled/1.gif) | | ![FastMochi 8 step](assets/distilled/2.gif) | ![Mochi 8 step](assets/undistilled/2.gif) | | ![FastMochi 8 step](assets/distilled/3.gif) | ![Mochi 8 step](assets/undistilled/3.gif) | | ![FastMochi 8 step](assets/distilled/4.gif) | ![Mochi 8 step](assets/undistilled/4.gif) |