update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: images
|
19 |
+
split: train
|
20 |
+
args: images
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.953125
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# swin-tiny-patch4-window7-224-finetuned-eurosat
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1379
|
35 |
+
- Accuracy: 0.9531
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 40
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 1.0 | 4 | 0.4862 | 0.8516 |
|
70 |
+
| No log | 2.0 | 8 | 0.4103 | 0.8828 |
|
71 |
+
| 0.4518 | 3.0 | 12 | 0.3210 | 0.8984 |
|
72 |
+
| 0.4518 | 4.0 | 16 | 0.2053 | 0.9375 |
|
73 |
+
| 0.2909 | 5.0 | 20 | 0.1675 | 0.9453 |
|
74 |
+
| 0.2909 | 6.0 | 24 | 0.1439 | 0.9531 |
|
75 |
+
| 0.2909 | 7.0 | 28 | 0.1448 | 0.9297 |
|
76 |
+
| 0.1492 | 8.0 | 32 | 0.1798 | 0.9531 |
|
77 |
+
| 0.1492 | 9.0 | 36 | 0.1360 | 0.9453 |
|
78 |
+
| 0.1161 | 10.0 | 40 | 0.1670 | 0.9531 |
|
79 |
+
| 0.1161 | 11.0 | 44 | 0.1637 | 0.9531 |
|
80 |
+
| 0.1161 | 12.0 | 48 | 0.1298 | 0.9531 |
|
81 |
+
| 0.1053 | 13.0 | 52 | 0.1162 | 0.9531 |
|
82 |
+
| 0.1053 | 14.0 | 56 | 0.1353 | 0.9531 |
|
83 |
+
| 0.0839 | 15.0 | 60 | 0.1211 | 0.9609 |
|
84 |
+
| 0.0839 | 16.0 | 64 | 0.1113 | 0.9609 |
|
85 |
+
| 0.0839 | 17.0 | 68 | 0.1145 | 0.9609 |
|
86 |
+
| 0.0689 | 18.0 | 72 | 0.1239 | 0.9531 |
|
87 |
+
| 0.0689 | 19.0 | 76 | 0.1280 | 0.9531 |
|
88 |
+
| 0.0581 | 20.0 | 80 | 0.1533 | 0.9531 |
|
89 |
+
| 0.0581 | 21.0 | 84 | 0.1323 | 0.9609 |
|
90 |
+
| 0.0581 | 22.0 | 88 | 0.1327 | 0.9531 |
|
91 |
+
| 0.0545 | 23.0 | 92 | 0.1529 | 0.9531 |
|
92 |
+
| 0.0545 | 24.0 | 96 | 0.1357 | 0.9531 |
|
93 |
+
| 0.046 | 25.0 | 100 | 0.1333 | 0.9531 |
|
94 |
+
| 0.046 | 26.0 | 104 | 0.1466 | 0.9531 |
|
95 |
+
| 0.046 | 27.0 | 108 | 0.1300 | 0.9531 |
|
96 |
+
| 0.0421 | 28.0 | 112 | 0.1077 | 0.9609 |
|
97 |
+
| 0.0421 | 29.0 | 116 | 0.0985 | 0.9609 |
|
98 |
+
| 0.0371 | 30.0 | 120 | 0.1186 | 0.9531 |
|
99 |
+
| 0.0371 | 31.0 | 124 | 0.1123 | 0.9531 |
|
100 |
+
| 0.0371 | 32.0 | 128 | 0.1144 | 0.9531 |
|
101 |
+
| 0.0348 | 33.0 | 132 | 0.1276 | 0.9531 |
|
102 |
+
| 0.0348 | 34.0 | 136 | 0.1488 | 0.9531 |
|
103 |
+
| 0.0211 | 35.0 | 140 | 0.1560 | 0.9531 |
|
104 |
+
| 0.0211 | 36.0 | 144 | 0.1477 | 0.9531 |
|
105 |
+
| 0.0211 | 37.0 | 148 | 0.1488 | 0.9531 |
|
106 |
+
| 0.0274 | 38.0 | 152 | 0.1467 | 0.9531 |
|
107 |
+
| 0.0274 | 39.0 | 156 | 0.1401 | 0.9531 |
|
108 |
+
| 0.0259 | 40.0 | 160 | 0.1379 | 0.9531 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.28.1
|
114 |
+
- Pytorch 2.0.0+cu118
|
115 |
+
- Datasets 2.11.0
|
116 |
+
- Tokenizers 0.13.3
|