Felguk commited on
Commit
b0ae5be
·
verified ·
1 Parent(s): 34efe07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -15
README.md CHANGED
@@ -12,6 +12,7 @@ language:
12
  - es
13
  - el
14
  - fr
 
15
  metrics:
16
  - bertscore
17
  base_model:
@@ -32,6 +33,8 @@ tags:
32
 
33
  This model is designed to classify audio clips into two categories: "Suno" music or "People" music. It is trained on a dataset containing examples of both types of music and can be used for various applications such as music recommendation, genre classification, and more.
34
 
 
 
35
  ## Model Details
36
 
37
  - **Model Name:** `felguk-suno-or-people`
@@ -39,27 +42,44 @@ This model is designed to classify audio clips into two categories: "Suno" music
39
  - **Input:** Audio clip (WAV format)
40
  - **Output:** Classification label (`suno` or `people`)
41
 
 
 
42
  ## Usage
43
 
44
- You can use this model directly with the Hugging Face `transformers` library. Below is an example of how to load and use the model:
45
 
46
- ```python
47
- from transformers import pipeline
48
 
49
- # Load the model
50
- classifier = pipeline("audio-classification", model="Felguk/Felguk-suno-or-people")
51
 
52
- # Classify an audio file
53
- result = classifier("path_to_audio_file.wav")
54
- print(result)
55
  ```
56
- ## install
57
  ```bash
58
- pip install transformers
 
 
 
 
 
59
  ```
60
- #### example
61
  ```bash
62
- [
63
- {"label": "suno", "score": 0.95},
64
- {"label": "people", "score": 0.05}
65
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  - es
13
  - el
14
  - fr
15
+ - ae
16
  metrics:
17
  - bertscore
18
  base_model:
 
33
 
34
  This model is designed to classify audio clips into two categories: "Suno" music or "People" music. It is trained on a dataset containing examples of both types of music and can be used for various applications such as music recommendation, genre classification, and more.
35
 
36
+ ---
37
+
38
  ## Model Details
39
 
40
  - **Model Name:** `felguk-suno-or-people`
 
42
  - **Input:** Audio clip (WAV format)
43
  - **Output:** Classification label (`suno` or `people`)
44
 
45
+ ---
46
+
47
  ## Usage
48
 
49
+ This model is not currently available via third-party inference providers or the Hugging Face Inference API. However, you can easily use it locally by following the steps below.
50
 
51
+ ### Step 1: Install Required Libraries
 
52
 
53
+ Make sure you have the `transformers` and `datasets` libraries installed:
 
54
 
55
+ ```bash
56
+ pip install transformers datasets
 
57
  ```
58
+ ## load model
59
  ```bash
60
+ from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
61
+ import torch
62
+
63
+ # Load the model and feature extractor
64
+ model = AutoModelForAudioClassification.from_pretrained("Felguk/Felguk-suno-or-people")
65
+ feature_extractor = AutoFeatureExtractor.from_pretrained("Felguk/Felguk-suno-or-people")
66
  ```
 
67
  ```bash
68
+ from datasets import load_dataset, Audio
69
+
70
+ # Load an example audio file (replace with your own file)
71
+ dataset = load_dataset("common_voice", "en", split="train", streaming=True)
72
+ audio_sample = next(iter(dataset))["audio"]
73
+
74
+ # Preprocess the audio
75
+ inputs = feature_extractor(audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt")
76
+ ```
77
+ ```bash
78
+ # Perform inference
79
+ with torch.no_grad():
80
+ logits = model(**inputs).logits
81
+
82
+ # Get the predicted label
83
+ predicted_class_id = logits.argmax().item()
84
+ label = model.config.id2label[predicted_class_id]
85
+ print(f"Predicted label: {label}")