File size: 7,939 Bytes
8ca40a1
cd6b127
c24ebad
 
8ca40a1
c24ebad
8ca40a1
 
c24ebad
 
 
 
 
8ca40a1
e7f5066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ca40a1
 
 
 
74ee767
8ca40a1
c24ebad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ca40a1
 
 
 
 
 
 
 
 
 
 
f52f355
 
 
b4e7c5c
3e83f5c
8ca40a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ee767
 
8ca40a1
071ac3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24ebad
e7f5066
 
c24ebad
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
language:
- en
license: apache-2.0
tags:
- text-generation
base_model: JackFram/llama-160m
datasets:
- ehartford/wizard_vicuna_70k_unfiltered
- totally-not-an-llm/EverythingLM-data-V3
- Open-Orca/SlimOrca-Dedup
- databricks/databricks-dolly-15k
- THUDM/webglm-qa
widget:
  - messages:
      - role: system
        content: You are a helpful assistant, who answers with empathy.
      - role: user
        content: Got a question for you!
      - role: assistant
        content: "Sure! What's it?"
      - role: user
        content: Why do you love cats so much!? ๐Ÿˆ
  - messages:
      - role: system
        content: "You are a helpful assistant who answers user's questions with empathy."
      - role: user
        content: Who is Mona Lisa?
  - messages:
      - role: system
        content: You are a helpful assistant who provides concise responses.
      - role: user
        content: Heya!
      - role: assistant
        content: Hi! How may I help you today?
      - role: user
        content: I need to build a simple website. Where should I start learning about web development?
  - messages:
      - role: user
        content: Invited some friends to come home today. Give me some ideas for games to play with them!
  - messages:
      - role: system
        content: "You are a helpful assistant who answers user's questions with details and curiosity."
      - role: user
        content: What are some potential applications for quantum computing?
  - messages:
      - role: system
        content: You are a helpful assistant who gives creative responses.
      - role: user
        content: Write the specs of a game about mages in a fantasy world.
  - messages:
      - role: system
        content: "You are a helpful assistant who answers user's questions with details."
      - role: user
        content: Tell me about the pros and cons of social media.
  - messages:
      - role: system
        content: "You are a helpful assistant who answers user's questions with confidence."
      - role: user
        content: What is a dog?
      - role: assistant
        content: 'A dog is a four-legged, domesticated animal that is a member of the class Mammalia,
          which includes all mammals. Dogs are known for their loyalty, playfulness, and
          ability to be trained for various tasks. They are also used for hunting, herding,
          and as service animals.'
      - role: user
        content: What is the color of an apple?
inference:
  parameters:
    max_new_tokens: 250
    penalty_alpha: 0.5
    top_k: 4
    repetition_penalty: 1.01
model-index:
- name: Llama-160M-Chat-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 24.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 35.29
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.16
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
      name: Open LLM Leaderboard
---

# A Llama Chat Model of 160M Parameters

- Base model: [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m)
- Datasets:
  - [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
  - [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data-V3)
  - [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
  - [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
  - [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa)
- Availability in other ML formats:
  - GGUF: [Felladrin/gguf-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/gguf-Llama-160M-Chat-v1)
  - ONNX: [Felladrin/onnx-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/onnx-Llama-160M-Chat-v1)
  - MLC: [Felladrin/mlc-q4f16-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/mlc-q4f16-Llama-160M-Chat-v1)
  - MLX: [mlx-community/Llama-160M-Chat-v1-4bit-mlx](https://huggingface.co/mlx-community/Llama-160M-Chat-v1-4bit-mlx)

## Recommended Prompt Format

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
```

## Recommended Inference Parameters

```yml
penalty_alpha: 0.5
top_k: 4
repetition_penalty: 1.01
```

## Usage Example

```python
from transformers import pipeline

generate = pipeline("text-generation", "Felladrin/Llama-160M-Chat-v1")

messages = [
    {
        "role": "system",
        "content": "You are a helpful assistant who answers user's questions with details and curiosity.",
    },
    {
        "role": "user",
        "content": "What are some potential applications for quantum computing?",
    },
]

prompt = generate.tokenizer.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)

output = generate(
    prompt,
    max_new_tokens=1024,
    penalty_alpha=0.5,
    top_k=4,
    repetition_penalty=1.01,
)

print(output[0]["generated_text"])
```

## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Llama-160M-Chat-v1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |30.27|
|AI2 Reasoning Challenge (25-Shot)|24.74|
|HellaSwag (10-Shot)              |35.29|
|MMLU (5-Shot)                    |26.13|
|TruthfulQA (0-shot)              |44.16|
|Winogrande (5-shot)              |51.30|
|GSM8k (5-shot)                   | 0.00|