Commit
·
6b83d25
1
Parent(s):
a283418
minify
Browse files- README.md +18 -0
- convert_mvdream_to_diffusers.py +0 -597
- requirements.lock.txt +0 -7
- requirements.txt +0 -9
README.md
CHANGED
@@ -3,10 +3,28 @@ license: openrail
|
|
3 |
pipeline_tag: image-to-3d
|
4 |
---
|
5 |
|
|
|
|
|
6 |
This is a duplicate of [ashawkey/imagedream-ipmv-diffusers](https://huggingface.co/ashawkey/imagedream-ipmv-diffusers).
|
7 |
|
8 |
It is hosted here for the purpose of persistence and reproducibility for the ML for 3D course.
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
Original model card below.
|
11 |
|
12 |
---
|
|
|
3 |
pipeline_tag: image-to-3d
|
4 |
---
|
5 |
|
6 |
+
# Overview
|
7 |
+
|
8 |
This is a duplicate of [ashawkey/imagedream-ipmv-diffusers](https://huggingface.co/ashawkey/imagedream-ipmv-diffusers).
|
9 |
|
10 |
It is hosted here for the purpose of persistence and reproducibility for the ML for 3D course.
|
11 |
|
12 |
+
### Usage
|
13 |
+
|
14 |
+
This project can be used from other projects as follows.
|
15 |
+
|
16 |
+
```
|
17 |
+
import torch
|
18 |
+
from diffusers import DiffusionPipeline
|
19 |
+
|
20 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
21 |
+
"ashawkey/mvdream-sd2.1-diffusers",
|
22 |
+
custom_pipeline="dylanebert/multi_view_diffusion",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
trust_remote_code=True,
|
25 |
+
)
|
26 |
+
```
|
27 |
+
|
28 |
Original model card below.
|
29 |
|
30 |
---
|
convert_mvdream_to_diffusers.py
DELETED
@@ -1,597 +0,0 @@
|
|
1 |
-
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
|
2 |
-
|
3 |
-
import argparse
|
4 |
-
import torch
|
5 |
-
import sys
|
6 |
-
|
7 |
-
sys.path.insert(0, ".")
|
8 |
-
|
9 |
-
from diffusers.models import (
|
10 |
-
AutoencoderKL,
|
11 |
-
)
|
12 |
-
from omegaconf import OmegaConf
|
13 |
-
from diffusers.schedulers import DDIMScheduler
|
14 |
-
from diffusers.utils import logging
|
15 |
-
from typing import Any
|
16 |
-
from accelerate import init_empty_weights
|
17 |
-
from accelerate.utils import set_module_tensor_to_device
|
18 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
19 |
-
|
20 |
-
from mv_unet import MultiViewUNetModel
|
21 |
-
from pipeline import MVDreamPipeline
|
22 |
-
import kiui
|
23 |
-
|
24 |
-
logger = logging.get_logger(__name__)
|
25 |
-
|
26 |
-
|
27 |
-
def assign_to_checkpoint(
|
28 |
-
paths,
|
29 |
-
checkpoint,
|
30 |
-
old_checkpoint,
|
31 |
-
attention_paths_to_split=None,
|
32 |
-
additional_replacements=None,
|
33 |
-
config=None,
|
34 |
-
):
|
35 |
-
"""
|
36 |
-
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
37 |
-
attention layers, and takes into account additional replacements that may arise.
|
38 |
-
Assigns the weights to the new checkpoint.
|
39 |
-
"""
|
40 |
-
assert isinstance(
|
41 |
-
paths, list
|
42 |
-
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
43 |
-
|
44 |
-
# Splits the attention layers into three variables.
|
45 |
-
if attention_paths_to_split is not None:
|
46 |
-
for path, path_map in attention_paths_to_split.items():
|
47 |
-
old_tensor = old_checkpoint[path]
|
48 |
-
channels = old_tensor.shape[0] // 3
|
49 |
-
|
50 |
-
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
51 |
-
|
52 |
-
assert config is not None
|
53 |
-
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
54 |
-
|
55 |
-
old_tensor = old_tensor.reshape(
|
56 |
-
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
|
57 |
-
)
|
58 |
-
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
59 |
-
|
60 |
-
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
61 |
-
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
62 |
-
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
63 |
-
|
64 |
-
for path in paths:
|
65 |
-
new_path = path["new"]
|
66 |
-
|
67 |
-
# These have already been assigned
|
68 |
-
if (
|
69 |
-
attention_paths_to_split is not None
|
70 |
-
and new_path in attention_paths_to_split
|
71 |
-
):
|
72 |
-
continue
|
73 |
-
|
74 |
-
# Global renaming happens here
|
75 |
-
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
76 |
-
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
77 |
-
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
78 |
-
|
79 |
-
if additional_replacements is not None:
|
80 |
-
for replacement in additional_replacements:
|
81 |
-
new_path = new_path.replace(replacement["old"], replacement["new"])
|
82 |
-
|
83 |
-
# proj_attn.weight has to be converted from conv 1D to linear
|
84 |
-
is_attn_weight = "proj_attn.weight" in new_path or (
|
85 |
-
"attentions" in new_path and "to_" in new_path
|
86 |
-
)
|
87 |
-
shape = old_checkpoint[path["old"]].shape
|
88 |
-
if is_attn_weight and len(shape) == 3:
|
89 |
-
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
90 |
-
elif is_attn_weight and len(shape) == 4:
|
91 |
-
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
92 |
-
else:
|
93 |
-
checkpoint[new_path] = old_checkpoint[path["old"]]
|
94 |
-
|
95 |
-
|
96 |
-
def shave_segments(path, n_shave_prefix_segments=1):
|
97 |
-
"""
|
98 |
-
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
99 |
-
"""
|
100 |
-
if n_shave_prefix_segments >= 0:
|
101 |
-
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
102 |
-
else:
|
103 |
-
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
104 |
-
|
105 |
-
|
106 |
-
def create_vae_diffusers_config(original_config, image_size):
|
107 |
-
"""
|
108 |
-
Creates a config for the diffusers based on the config of the LDM model.
|
109 |
-
"""
|
110 |
-
|
111 |
-
|
112 |
-
if 'imagedream' in original_config.model.target:
|
113 |
-
vae_params = original_config.model.params.vae_config.params.ddconfig
|
114 |
-
_ = original_config.model.params.vae_config.params.embed_dim
|
115 |
-
vae_key = "vae_model."
|
116 |
-
else:
|
117 |
-
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
118 |
-
_ = original_config.model.params.first_stage_config.params.embed_dim
|
119 |
-
vae_key = "first_stage_model."
|
120 |
-
|
121 |
-
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
122 |
-
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
123 |
-
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
124 |
-
|
125 |
-
config = {
|
126 |
-
"sample_size": image_size,
|
127 |
-
"in_channels": vae_params.in_channels,
|
128 |
-
"out_channels": vae_params.out_ch,
|
129 |
-
"down_block_types": tuple(down_block_types),
|
130 |
-
"up_block_types": tuple(up_block_types),
|
131 |
-
"block_out_channels": tuple(block_out_channels),
|
132 |
-
"latent_channels": vae_params.z_channels,
|
133 |
-
"layers_per_block": vae_params.num_res_blocks,
|
134 |
-
}
|
135 |
-
return config, vae_key
|
136 |
-
|
137 |
-
|
138 |
-
def convert_ldm_vae_checkpoint(checkpoint, config, vae_key):
|
139 |
-
# extract state dict for VAE
|
140 |
-
vae_state_dict = {}
|
141 |
-
keys = list(checkpoint.keys())
|
142 |
-
for key in keys:
|
143 |
-
if key.startswith(vae_key):
|
144 |
-
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
145 |
-
|
146 |
-
new_checkpoint = {}
|
147 |
-
|
148 |
-
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
149 |
-
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
150 |
-
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
151 |
-
"encoder.conv_out.weight"
|
152 |
-
]
|
153 |
-
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
154 |
-
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
155 |
-
"encoder.norm_out.weight"
|
156 |
-
]
|
157 |
-
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
158 |
-
"encoder.norm_out.bias"
|
159 |
-
]
|
160 |
-
|
161 |
-
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
162 |
-
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
163 |
-
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
164 |
-
"decoder.conv_out.weight"
|
165 |
-
]
|
166 |
-
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
167 |
-
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
168 |
-
"decoder.norm_out.weight"
|
169 |
-
]
|
170 |
-
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
171 |
-
"decoder.norm_out.bias"
|
172 |
-
]
|
173 |
-
|
174 |
-
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
175 |
-
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
176 |
-
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
177 |
-
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
178 |
-
|
179 |
-
# Retrieves the keys for the encoder down blocks only
|
180 |
-
num_down_blocks = len(
|
181 |
-
{
|
182 |
-
".".join(layer.split(".")[:3])
|
183 |
-
for layer in vae_state_dict
|
184 |
-
if "encoder.down" in layer
|
185 |
-
}
|
186 |
-
)
|
187 |
-
down_blocks = {
|
188 |
-
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
189 |
-
for layer_id in range(num_down_blocks)
|
190 |
-
}
|
191 |
-
|
192 |
-
# Retrieves the keys for the decoder up blocks only
|
193 |
-
num_up_blocks = len(
|
194 |
-
{
|
195 |
-
".".join(layer.split(".")[:3])
|
196 |
-
for layer in vae_state_dict
|
197 |
-
if "decoder.up" in layer
|
198 |
-
}
|
199 |
-
)
|
200 |
-
up_blocks = {
|
201 |
-
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
202 |
-
for layer_id in range(num_up_blocks)
|
203 |
-
}
|
204 |
-
|
205 |
-
for i in range(num_down_blocks):
|
206 |
-
resnets = [
|
207 |
-
key
|
208 |
-
for key in down_blocks[i]
|
209 |
-
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
210 |
-
]
|
211 |
-
|
212 |
-
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
213 |
-
new_checkpoint[
|
214 |
-
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
215 |
-
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
216 |
-
new_checkpoint[
|
217 |
-
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
218 |
-
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
219 |
-
|
220 |
-
paths = renew_vae_resnet_paths(resnets)
|
221 |
-
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
222 |
-
assign_to_checkpoint(
|
223 |
-
paths,
|
224 |
-
new_checkpoint,
|
225 |
-
vae_state_dict,
|
226 |
-
additional_replacements=[meta_path],
|
227 |
-
config=config,
|
228 |
-
)
|
229 |
-
|
230 |
-
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
231 |
-
num_mid_res_blocks = 2
|
232 |
-
for i in range(1, num_mid_res_blocks + 1):
|
233 |
-
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
234 |
-
|
235 |
-
paths = renew_vae_resnet_paths(resnets)
|
236 |
-
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
237 |
-
assign_to_checkpoint(
|
238 |
-
paths,
|
239 |
-
new_checkpoint,
|
240 |
-
vae_state_dict,
|
241 |
-
additional_replacements=[meta_path],
|
242 |
-
config=config,
|
243 |
-
)
|
244 |
-
|
245 |
-
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
246 |
-
paths = renew_vae_attention_paths(mid_attentions)
|
247 |
-
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
248 |
-
assign_to_checkpoint(
|
249 |
-
paths,
|
250 |
-
new_checkpoint,
|
251 |
-
vae_state_dict,
|
252 |
-
additional_replacements=[meta_path],
|
253 |
-
config=config,
|
254 |
-
)
|
255 |
-
conv_attn_to_linear(new_checkpoint)
|
256 |
-
|
257 |
-
for i in range(num_up_blocks):
|
258 |
-
block_id = num_up_blocks - 1 - i
|
259 |
-
resnets = [
|
260 |
-
key
|
261 |
-
for key in up_blocks[block_id]
|
262 |
-
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
263 |
-
]
|
264 |
-
|
265 |
-
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
266 |
-
new_checkpoint[
|
267 |
-
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
268 |
-
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
269 |
-
new_checkpoint[
|
270 |
-
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
271 |
-
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
272 |
-
|
273 |
-
paths = renew_vae_resnet_paths(resnets)
|
274 |
-
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
275 |
-
assign_to_checkpoint(
|
276 |
-
paths,
|
277 |
-
new_checkpoint,
|
278 |
-
vae_state_dict,
|
279 |
-
additional_replacements=[meta_path],
|
280 |
-
config=config,
|
281 |
-
)
|
282 |
-
|
283 |
-
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
284 |
-
num_mid_res_blocks = 2
|
285 |
-
for i in range(1, num_mid_res_blocks + 1):
|
286 |
-
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
287 |
-
|
288 |
-
paths = renew_vae_resnet_paths(resnets)
|
289 |
-
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
290 |
-
assign_to_checkpoint(
|
291 |
-
paths,
|
292 |
-
new_checkpoint,
|
293 |
-
vae_state_dict,
|
294 |
-
additional_replacements=[meta_path],
|
295 |
-
config=config,
|
296 |
-
)
|
297 |
-
|
298 |
-
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
299 |
-
paths = renew_vae_attention_paths(mid_attentions)
|
300 |
-
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
301 |
-
assign_to_checkpoint(
|
302 |
-
paths,
|
303 |
-
new_checkpoint,
|
304 |
-
vae_state_dict,
|
305 |
-
additional_replacements=[meta_path],
|
306 |
-
config=config,
|
307 |
-
)
|
308 |
-
conv_attn_to_linear(new_checkpoint)
|
309 |
-
return new_checkpoint
|
310 |
-
|
311 |
-
|
312 |
-
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
313 |
-
"""
|
314 |
-
Updates paths inside resnets to the new naming scheme (local renaming)
|
315 |
-
"""
|
316 |
-
mapping = []
|
317 |
-
for old_item in old_list:
|
318 |
-
new_item = old_item
|
319 |
-
|
320 |
-
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
321 |
-
new_item = shave_segments(
|
322 |
-
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
323 |
-
)
|
324 |
-
|
325 |
-
mapping.append({"old": old_item, "new": new_item})
|
326 |
-
|
327 |
-
return mapping
|
328 |
-
|
329 |
-
|
330 |
-
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
331 |
-
"""
|
332 |
-
Updates paths inside attentions to the new naming scheme (local renaming)
|
333 |
-
"""
|
334 |
-
mapping = []
|
335 |
-
for old_item in old_list:
|
336 |
-
new_item = old_item
|
337 |
-
|
338 |
-
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
339 |
-
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
340 |
-
|
341 |
-
new_item = new_item.replace("q.weight", "to_q.weight")
|
342 |
-
new_item = new_item.replace("q.bias", "to_q.bias")
|
343 |
-
|
344 |
-
new_item = new_item.replace("k.weight", "to_k.weight")
|
345 |
-
new_item = new_item.replace("k.bias", "to_k.bias")
|
346 |
-
|
347 |
-
new_item = new_item.replace("v.weight", "to_v.weight")
|
348 |
-
new_item = new_item.replace("v.bias", "to_v.bias")
|
349 |
-
|
350 |
-
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
351 |
-
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
352 |
-
|
353 |
-
new_item = shave_segments(
|
354 |
-
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
355 |
-
)
|
356 |
-
|
357 |
-
mapping.append({"old": old_item, "new": new_item})
|
358 |
-
|
359 |
-
return mapping
|
360 |
-
|
361 |
-
|
362 |
-
def conv_attn_to_linear(checkpoint):
|
363 |
-
keys = list(checkpoint.keys())
|
364 |
-
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
365 |
-
for key in keys:
|
366 |
-
if ".".join(key.split(".")[-2:]) in attn_keys:
|
367 |
-
if checkpoint[key].ndim > 2:
|
368 |
-
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
369 |
-
elif "proj_attn.weight" in key:
|
370 |
-
if checkpoint[key].ndim > 2:
|
371 |
-
checkpoint[key] = checkpoint[key][:, :, 0]
|
372 |
-
|
373 |
-
|
374 |
-
def create_unet_config(original_config) -> Any:
|
375 |
-
return OmegaConf.to_container(
|
376 |
-
original_config.model.params.unet_config.params, resolve=True
|
377 |
-
)
|
378 |
-
|
379 |
-
|
380 |
-
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
|
381 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
382 |
-
# print(f"Checkpoint: {checkpoint.keys()}")
|
383 |
-
torch.cuda.empty_cache()
|
384 |
-
|
385 |
-
original_config = OmegaConf.load(original_config_file)
|
386 |
-
# print(f"Original Config: {original_config}")
|
387 |
-
prediction_type = "epsilon"
|
388 |
-
image_size = 256
|
389 |
-
num_train_timesteps = (
|
390 |
-
getattr(original_config.model.params, "timesteps", None) or 1000
|
391 |
-
)
|
392 |
-
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
|
393 |
-
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
|
394 |
-
scheduler = DDIMScheduler(
|
395 |
-
beta_end=beta_end,
|
396 |
-
beta_schedule="scaled_linear",
|
397 |
-
beta_start=beta_start,
|
398 |
-
num_train_timesteps=num_train_timesteps,
|
399 |
-
steps_offset=1,
|
400 |
-
clip_sample=False,
|
401 |
-
set_alpha_to_one=False,
|
402 |
-
prediction_type=prediction_type,
|
403 |
-
)
|
404 |
-
scheduler.register_to_config(clip_sample=False)
|
405 |
-
|
406 |
-
unet_config = create_unet_config(original_config)
|
407 |
-
|
408 |
-
# remove unused configs
|
409 |
-
unet_config.pop('legacy', None)
|
410 |
-
unet_config.pop('use_linear_in_transformer', None)
|
411 |
-
unet_config.pop('use_spatial_transformer', None)
|
412 |
-
|
413 |
-
unet_config.pop('ip_mode', None)
|
414 |
-
unet_config.pop('with_ip', None)
|
415 |
-
|
416 |
-
unet = MultiViewUNetModel(**unet_config)
|
417 |
-
unet.register_to_config(**unet_config)
|
418 |
-
# print(f"Unet State Dict: {unet.state_dict().keys()}")
|
419 |
-
unet.load_state_dict(
|
420 |
-
{
|
421 |
-
key.replace("model.diffusion_model.", ""): value
|
422 |
-
for key, value in checkpoint.items()
|
423 |
-
if key.replace("model.diffusion_model.", "") in unet.state_dict()
|
424 |
-
}
|
425 |
-
)
|
426 |
-
for param_name, param in unet.state_dict().items():
|
427 |
-
set_module_tensor_to_device(unet, param_name, device=device, value=param)
|
428 |
-
|
429 |
-
# Convert the VAE model.
|
430 |
-
vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size)
|
431 |
-
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key)
|
432 |
-
|
433 |
-
if (
|
434 |
-
"model" in original_config
|
435 |
-
and "params" in original_config.model
|
436 |
-
and "scale_factor" in original_config.model.params
|
437 |
-
):
|
438 |
-
vae_scaling_factor = original_config.model.params.scale_factor
|
439 |
-
else:
|
440 |
-
vae_scaling_factor = 0.18215 # default SD scaling factor
|
441 |
-
|
442 |
-
vae_config["scaling_factor"] = vae_scaling_factor
|
443 |
-
|
444 |
-
with init_empty_weights():
|
445 |
-
vae = AutoencoderKL(**vae_config)
|
446 |
-
|
447 |
-
for param_name, param in converted_vae_checkpoint.items():
|
448 |
-
set_module_tensor_to_device(vae, param_name, device=device, value=param)
|
449 |
-
|
450 |
-
# we only supports SD 2.1 based model
|
451 |
-
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer")
|
452 |
-
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore
|
453 |
-
|
454 |
-
# imagedream variant
|
455 |
-
if unet.ip_dim > 0:
|
456 |
-
feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
457 |
-
image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
458 |
-
else:
|
459 |
-
feature_extractor = None
|
460 |
-
image_encoder = None
|
461 |
-
|
462 |
-
pipe = MVDreamPipeline(
|
463 |
-
vae=vae,
|
464 |
-
unet=unet,
|
465 |
-
tokenizer=tokenizer,
|
466 |
-
text_encoder=text_encoder,
|
467 |
-
scheduler=scheduler,
|
468 |
-
feature_extractor=feature_extractor,
|
469 |
-
image_encoder=image_encoder,
|
470 |
-
)
|
471 |
-
|
472 |
-
return pipe
|
473 |
-
|
474 |
-
|
475 |
-
if __name__ == "__main__":
|
476 |
-
parser = argparse.ArgumentParser()
|
477 |
-
|
478 |
-
parser.add_argument(
|
479 |
-
"--checkpoint_path",
|
480 |
-
default=None,
|
481 |
-
type=str,
|
482 |
-
required=True,
|
483 |
-
help="Path to the checkpoint to convert.",
|
484 |
-
)
|
485 |
-
parser.add_argument(
|
486 |
-
"--original_config_file",
|
487 |
-
default=None,
|
488 |
-
type=str,
|
489 |
-
help="The YAML config file corresponding to the original architecture.",
|
490 |
-
)
|
491 |
-
parser.add_argument(
|
492 |
-
"--to_safetensors",
|
493 |
-
action="store_true",
|
494 |
-
help="Whether to store pipeline in safetensors format or not.",
|
495 |
-
)
|
496 |
-
parser.add_argument(
|
497 |
-
"--half", action="store_true", help="Save weights in half precision."
|
498 |
-
)
|
499 |
-
parser.add_argument(
|
500 |
-
"--test",
|
501 |
-
action="store_true",
|
502 |
-
help="Whether to test inference after convertion.",
|
503 |
-
)
|
504 |
-
parser.add_argument(
|
505 |
-
"--dump_path",
|
506 |
-
default=None,
|
507 |
-
type=str,
|
508 |
-
required=True,
|
509 |
-
help="Path to the output model.",
|
510 |
-
)
|
511 |
-
parser.add_argument(
|
512 |
-
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
|
513 |
-
)
|
514 |
-
args = parser.parse_args()
|
515 |
-
|
516 |
-
args.device = torch.device(
|
517 |
-
args.device
|
518 |
-
if args.device is not None
|
519 |
-
else "cuda"
|
520 |
-
if torch.cuda.is_available()
|
521 |
-
else "cpu"
|
522 |
-
)
|
523 |
-
|
524 |
-
pipe = convert_from_original_mvdream_ckpt(
|
525 |
-
checkpoint_path=args.checkpoint_path,
|
526 |
-
original_config_file=args.original_config_file,
|
527 |
-
device=args.device,
|
528 |
-
)
|
529 |
-
|
530 |
-
if args.half:
|
531 |
-
pipe.to(torch_dtype=torch.float16)
|
532 |
-
|
533 |
-
print(f"Saving pipeline to {args.dump_path}...")
|
534 |
-
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
535 |
-
|
536 |
-
if args.test:
|
537 |
-
try:
|
538 |
-
# mvdream
|
539 |
-
if pipe.unet.ip_dim == 0:
|
540 |
-
print(f"Testing each subcomponent of the pipeline...")
|
541 |
-
images = pipe(
|
542 |
-
prompt="Head of Hatsune Miku",
|
543 |
-
negative_prompt="painting, bad quality, flat",
|
544 |
-
output_type="pil",
|
545 |
-
guidance_scale=7.5,
|
546 |
-
num_inference_steps=50,
|
547 |
-
device=args.device,
|
548 |
-
)
|
549 |
-
for i, image in enumerate(images):
|
550 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
551 |
-
|
552 |
-
print(f"Testing entire pipeline...")
|
553 |
-
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore
|
554 |
-
images = loaded_pipe(
|
555 |
-
prompt="Head of Hatsune Miku",
|
556 |
-
negative_prompt="painting, bad quality, flat",
|
557 |
-
output_type="pil",
|
558 |
-
guidance_scale=7.5,
|
559 |
-
num_inference_steps=50,
|
560 |
-
device=args.device,
|
561 |
-
)
|
562 |
-
for i, image in enumerate(images):
|
563 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
564 |
-
# imagedream
|
565 |
-
else:
|
566 |
-
input_image = kiui.read_image('data/anya_rgba.png', mode='float')
|
567 |
-
print(f"Testing each subcomponent of the pipeline...")
|
568 |
-
images = pipe(
|
569 |
-
image=input_image,
|
570 |
-
prompt="",
|
571 |
-
negative_prompt="",
|
572 |
-
output_type="pil",
|
573 |
-
guidance_scale=5.0,
|
574 |
-
num_inference_steps=50,
|
575 |
-
device=args.device,
|
576 |
-
)
|
577 |
-
for i, image in enumerate(images):
|
578 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
579 |
-
|
580 |
-
print(f"Testing entire pipeline...")
|
581 |
-
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore
|
582 |
-
images = loaded_pipe(
|
583 |
-
image=input_image,
|
584 |
-
prompt="",
|
585 |
-
negative_prompt="",
|
586 |
-
output_type="pil",
|
587 |
-
guidance_scale=5.0,
|
588 |
-
num_inference_steps=50,
|
589 |
-
device=args.device,
|
590 |
-
)
|
591 |
-
for i, image in enumerate(images):
|
592 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
593 |
-
|
594 |
-
|
595 |
-
print("Inference test passed!")
|
596 |
-
except Exception as e:
|
597 |
-
print(f"Failed to test inference: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.lock.txt
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
omegaconf == 2.3.0
|
2 |
-
diffusers == 0.23.1
|
3 |
-
safetensors == 0.4.1
|
4 |
-
huggingface_hub == 0.19.4
|
5 |
-
transformers == 4.35.2
|
6 |
-
accelerate == 0.25.0.dev0
|
7 |
-
kiui == 0.2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
omegaconf
|
2 |
-
diffusers
|
3 |
-
safetensors
|
4 |
-
huggingface_hub
|
5 |
-
transformers
|
6 |
-
accelerate
|
7 |
-
kiui
|
8 |
-
einops
|
9 |
-
rich
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|