Text Generation
Transformers
Safetensors
Finnish
llama
finnish
conversational
text-generation-inference
Ahma-3B / EasyLM /data.py
aapot
Update optimizers
0b67ff4
raw
history blame
16.6 kB
import dataclasses
import pprint
import time
from functools import partial
import json
import base64
from multiprocessing import Pool
import h5py
import mlxu
from ml_collections.config_dict import config_dict
from ml_collections import ConfigDict
from tqdm import tqdm, trange
import numpy as np
from datasets import load_dataset, load_from_disk
class DatasetFactory(object):
""" Datset builder class. """
@staticmethod
def get_default_config(updates=None):
config = ConfigDict()
config.type = 'huggingface'
config.text_processor = TextProcessor.get_default_config()
config.huggingface_dataset = HuggingfaceDataset.get_default_config()
config.json_dataset = JsonDataset.get_default_config()
if updates is not None:
config.update(ConfigDict(updates).copy_and_resolve_references())
return config
@classmethod
def load_dataset(cls, config, tokenizer, **kwargs):
config = cls.get_default_config(config)
text_processor = TextProcessor(config.text_processor, tokenizer)
if config.type == 'huggingface':
return HuggingfaceDataset(
config.huggingface_dataset, tokenizer, text_processor, **kwargs
)
elif config.type == 'json':
return JsonDataset(config.json_dataset, tokenizer, text_processor, **kwargs)
else:
raise ValueError(f'Unknown dataset type: {config.type}')
def __init__(self):
raise ValueError('DatasetFactory is a static class and should not be instantiated.')
class TextProcessor(object):
""" Example processor that converts a dictionary of texts into tokens. """
@staticmethod
def get_default_config(updates=None):
config = ConfigDict()
config.fields_from_example = ''
config.fields = ''
config.subfield_separator = ' '
config.add_bos_token = True
config.add_eos_token = True
config.prepend_text = ''
config.base64_token_dtype = 'i4'
if updates is not None:
config.update(ConfigDict(updates).copy_and_resolve_references())
return config
def __init__(self, config, tokenizer):
self.config = self.get_default_config(config)
assert self.config.fields != '' or self.config.fields_from_example != '', (
'Either fields or fields_from_example must be specified.'
)
self.tokenizer = tokenizer
def __call__(self, example, has_aux=False):
if has_aux:
example, *aux = example
else:
aux = tuple()
token_buffer = []
loss_mask_buffer = []
if self.config.add_bos_token:
token_buffer.append(self.tokenizer.bos_token_id)
loss_mask_buffer.append(0.0)
if self.config.fields_from_example != '':
fields = example[self.config.fields_from_example].split(',')
else:
fields = self.config.fields.split(',')
for i, field in enumerate(fields):
if field.startswith('[') and field.endswith(']'):
# No loss for this field.
field = field[1:-1]
mask = 0.0
else:
mask = 1.0
if field.startswith('<|') and field.endswith('|>'):
# Special tokens.
field = field[2:-2]
if field == 'bos':
token_buffer.append(self.tokenizer.bos_token_id)
elif field == 'eos':
token_buffer.append(self.tokenizer.eos_token_id)
else:
# Token ID specified directly.
token_buffer.append(int(field))
loss_mask_buffer.append(mask)
elif field.startswith('{') and field.endswith('}'):
field = field[1:-1]
# Base64 encoded raw tokens.
tokens = np.frombuffer(
base64.b64decode(example[field]),
dtype=self.config.base64_token_dtype
).tolist()
token_buffer.extend(tokens)
loss_mask_buffer.extend([mask for _ in range(len(tokens))])
else:
subfields = field.split('+')
text = self.config.subfield_separator.join(
[example[subfield] for subfield in subfields]
)
if i == 0:
text = self.config.prepend_text + text
tokens = self.tokenizer.encode(text)
token_buffer.extend(tokens)
loss_mask_buffer.extend([mask for _ in range(len(tokens))])
if self.config.add_eos_token:
token_buffer.append(self.tokenizer.eos_token_id)
loss_mask_buffer.append(1.0)
return token_buffer, loss_mask_buffer, *aux
class HuggingfaceDataset(object):
""" Huggingface dataset, where the dataset is loaded using the huggingface
datasets.load_dataset() function.
"""
@staticmethod
def get_default_config(updates=None):
config = ConfigDict()
config.path = 'c4'
config.name = 'en'
config.split = 'train'
config.streaming = False
config.seq_length = 1024
config.batch_size = 8
config.always_start_with_bos = False
config.start_seek_loc = 0
config.tokens_count_at_start = 0
config.batch_token_dtype = 'i4'
config.reset_dataset_loc = False
if updates is not None:
config.update(ConfigDict(updates).copy_and_resolve_references())
return config
def __init__(self, config, tokenizer, text_processor, eval_dataset=False):
self.config = self.get_default_config(config)
name = self.config.name if self.config.name != '' else None
split = self.config.split if self.config.split != '' else None
self._tokenizer = tokenizer
self._text_processor = text_processor
self._dataset = load_from_disk(
self.config.path
)[split]
self._dataset = self._dataset.to_iterable_dataset(num_shards=128 if len(self._dataset) > 128 else len(self._dataset))
self._eval_dataset = eval_dataset
self._train_epochs = 0
self._dataset_loc = self.config.start_seek_loc
self._total_tokens = self.config.tokens_count_at_start
self._index = 0
self.reset_dataset_loc = self.config.reset_dataset_loc
def __iter__(self):
if not self._eval_dataset and self._train_epochs > 0:
self._dataset = self._dataset.shuffle(seed=42, buffer_size=10000)
chunk_size = self.config.batch_size * self.config.seq_length
while True:
token_buffer = []
loss_mask_buffer = []
if not self._eval_dataset and self._train_epochs > 0:
self._dataset.set_epoch(self._train_epochs)
for index, example in enumerate(self._dataset):
self._index = index
if not self._eval_dataset and self._dataset_loc > index:
continue
tokens, loss_masks = self.text_processor(example)
token_buffer.extend(tokens)
loss_mask_buffer.extend(loss_masks)
while len(token_buffer) > chunk_size + 1:
self._total_tokens += chunk_size
metrics = {
'dataset_example_index': index,
'dataset_total_tokens': self._total_tokens,
'epoch': self._train_epochs,
}
batch = {
'input_tokens': np.array(token_buffer[:chunk_size], dtype=self.config.batch_token_dtype).reshape(
self.config.batch_size, -1
),
'target_tokens': np.array(token_buffer[1:chunk_size + 1], dtype=self.config.batch_token_dtype).reshape(
self.config.batch_size, -1
),
'loss_masks': np.array(loss_mask_buffer[1:chunk_size + 1], dtype=np.float32).reshape(
self.config.batch_size, -1
),
}
if self.config.always_start_with_bos:
batch['input_tokens'][:, 0] = self.tokenizer.bos_token_id
yield batch, metrics
token_buffer = token_buffer[chunk_size:]
loss_mask_buffer = loss_mask_buffer[chunk_size:]
if self._eval_dataset:
break
else:
if self._train_epochs == 0:
self._dataset = self._dataset.shuffle(seed=42, buffer_size=10000)
self._dataset_loc = 0
self._train_epochs += 1
def get_state_dict(self):
return dict(
config=self.config,
dataset_loc=self._index,
total_tokens=self._total_tokens,
epochs=self._train_epochs,
)
def load_state_dict(self, state_dict):
if 'config' in state_dict:
self.config.update(ConfigDict(state_dict['config']))
self._dataset_loc = state_dict.get('dataset_loc', self.config.start_seek_loc)
self._total_tokens = state_dict.get('total_tokens', self.config.tokens_count_at_start)
self._train_epochs = state_dict.get('epochs', 0)
if self.reset_dataset_loc:
self._dataset_loc = 0
self._train_epochs = 0
@property
def seq_length(self):
return self.config.seq_length
@property
def tokenizer(self):
return self._tokenizer
@property
def text_processor(self):
return self._text_processor
@property
def dataset(self):
return self._dataset
@property
def vocab_size(self):
return len(self._tokenizer)
class JsonDataset(object):
""" JSON dataset, where each line of the data file contains a JSON
dictionary with text fields.
"""
@staticmethod
def get_default_config(updates=None):
config = ConfigDict()
config.path = ''
config.seq_length = 1024
config.batch_size = 8
config.always_start_with_bos = False
config.start_seek_loc = 0
config.example_index_at_start = 0
config.tokens_count_at_start = 0
config.tokenizer_processes = 1
config.tokenizer_parallel_chunk_size = 32
config.tokenizer_parallel_batch_size = 1024
config.throughput_average_window_size = 200
if updates is not None:
config.update(ConfigDict(updates).copy_and_resolve_references())
return config
def __init__(self, config, tokenizer, text_processor):
self.config = self.get_default_config(config)
assert self.config.path != ''
self._tokenizer = tokenizer
self._text_processor = text_processor
self._index = self.config.example_index_at_start
self._file_loc = self.config.start_seek_loc
self._total_tokens = self.config.tokens_count_at_start
def parse_json(self, line):
if not line or line == '\n':
return None
try:
data = json.loads(line)
except json.decoder.JSONDecodeError:
print(f'Error parsing json line:\n{line}')
return None
return data
def json_iterator(self):
with mlxu.open_file(self.config.path, 'r') as fin:
fin.seek(self._file_loc)
while True:
line = fin.readline()
self._file_loc = fin.tell()
if not line: # Reached EOF
self._index = 0
fin.seek(0)
continue
data = self.parse_json(line)
if data is not None:
# JSON parsing succeeded
yield data, self._file_loc, self._index
self._index += 1
def batched(self, iterator, batch_size):
batch = []
for example in iterator:
batch.append(example)
if len(batch) == batch_size:
yield batch
batch = []
if len(batch) > 0:
yield batch
def parallel_example_iterator(self):
if self.config.tokenizer_processes == 1:
for example, loc, index in self.json_iterator():
yield self.text_processor((example, loc, index), has_aux=True)
else:
process_pool = Pool(self.config.tokenizer_processes)
batched_iterator = self.batched(
self.json_iterator(), self.config.tokenizer_parallel_batch_size
)
with process_pool as pool:
map_fn = partial(self.text_processor, has_aux=True)
next_batch = pool.map_async(
map_fn, next(batched_iterator),
chunksize=self.config.tokenizer_parallel_chunk_size
)
while True:
current_batch = next_batch
next_batch = pool.map_async(
map_fn, next(batched_iterator),
chunksize=self.config.tokenizer_parallel_chunk_size
)
for example in current_batch.get():
yield example
def __iter__(self):
chunk_size = self.config.batch_size * self.config.seq_length
token_buffer = []
loss_mask_buffer = []
last_time = 0.0
step_times = []
start_time = time.time()
start_tokens = self._total_tokens
for tokens, loss_masks, loc, index in self.parallel_example_iterator():
token_buffer.extend(tokens)
loss_mask_buffer.extend(loss_masks)
while len(token_buffer) > chunk_size + 1:
self._total_tokens += chunk_size
step_times.append(time.time() - last_time)
last_time = time.time()
if len(step_times) > self.config.throughput_average_window_size:
step_times = step_times[-self.config.throughput_average_window_size:]
average_throughput = chunk_size / np.mean(step_times)
accumulated_throughput = (
(self._total_tokens - start_tokens) / (time.time() - start_time)
)
metrics = {
'dataset_file_loc': loc,
'dataset_example_index': index,
'dataset_total_tokens': self._total_tokens,
'dataset_accumulated_tps': accumulated_throughput,
'dataset_average_tps': average_throughput,
}
batch = {
'input_tokens': np.array(token_buffer[:chunk_size], dtype=np.int32).reshape(
self.config.batch_size, -1
),
'target_tokens': np.array(token_buffer[1:chunk_size + 1], dtype=np.int32).reshape(
self.config.batch_size, -1
),
'loss_masks': np.array(loss_mask_buffer[1:chunk_size + 1], dtype=np.float32).reshape(
self.config.batch_size, -1
),
}
if self.config.always_start_with_bos:
batch['input_tokens'][:, 0] = self.tokenizer.bos_token_id
yield batch, metrics
token_buffer = token_buffer[chunk_size:]
loss_mask_buffer = loss_mask_buffer[chunk_size:]
def get_state_dict(self):
return dict(
config=self.config,
index=self._index,
file_loc=self._file_loc,
total_tokens=self._total_tokens,
)
def load_state_dict(self, state_dict):
if 'config' in state_dict:
self.config.update(ConfigDict(state_dict['config']))
self._index = state_dict.get('index', self.config.example_index_at_start)
self._file_loc = state_dict.get('file_loc', self.config.start_seek_loc)
self._total_tokens = state_dict.get('total_tokens', self.config.tokens_count_at_start)
@property
def seq_length(self):
return self.config.seq_length
@property
def tokenizer(self):
return self._tokenizer
@property
def text_processor(self):
return self._text_processor
@property
def vocab_size(self):
return len(self.tokenizer)