Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 51,131 Bytes
a971b09
 
 
 
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
 
 
0394e28
a971b09
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
 
 
 
 
 
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9500b77
0394e28
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
 
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
c1f8001
 
 
0394e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
 
a971b09
0394e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971b09
 
 
 
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
 
 
 
 
 
a971b09
 
 
 
0394e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
 
 
 
a971b09
 
0394e28
 
 
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0394e28
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import json
import tempfile
from functools import partial

import numpy as np
import jax
import jax.numpy as jnp
from jax import lax
from jax.sharding import PartitionSpec as PS
import flax.linen as nn
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from flax.linen import partitioning as nn_partitioning
import einops

import sentencepiece as spm
from transformers import AutoTokenizer
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging

from ml_collections import ConfigDict
from ml_collections.config_dict import config_dict
from mlxu import function_args_to_config, load_pickle, open_file

from EasyLM.bpt import blockwise_ffn, blockwise_attn
from EasyLM.jax_utils import (
    with_sharding_constraint, get_jax_mesh, get_gradient_checkpoint_policy
)


LLAMA_STANDARD_CONFIGS = {
    'small': {
        'vocab_size': 64256,
        'hidden_size': 768,
        'intermediate_size': 3072,
        'num_hidden_layers': 12,
        'num_attention_heads': 12,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    'medium': {
        'vocab_size': 64256,
        'hidden_size': 1024,
        'intermediate_size': 4096,
        'num_hidden_layers': 24,
        'num_attention_heads': 16,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    'large': {
        'vocab_size': 64256,
        'hidden_size': 1536,
        'intermediate_size': 6144,
        'num_hidden_layers': 24,
        'num_attention_heads': 16,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    'xlarge': {
        'vocab_size': 64256,
        'hidden_size': 2048,
        'intermediate_size': 8192,
        'num_hidden_layers': 24,
        'num_attention_heads': 32,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    '1b': {
        'vocab_size': 64256,
        'hidden_size': 2048,
        'intermediate_size': 5504,
        'num_hidden_layers': 22,
        'num_attention_heads': 16,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    '3b': {
        'vocab_size': 64256,
        'hidden_size': 3200,
        'intermediate_size': 8640,
        'num_hidden_layers': 26,
        'num_attention_heads': 32,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    '7b': {
        'vocab_size': 64256,
        'hidden_size': 4096,
        'intermediate_size': 11008,
        'num_hidden_layers': 32,
        'num_attention_heads': 32,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    '13b': {
        'vocab_size': 64256,
        'hidden_size': 5120,
        'intermediate_size': 13824,
        'num_hidden_layers': 40,
        'num_attention_heads': 40,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    '30b': {
        'vocab_size': 64256,
        'hidden_size': 6656,
        'intermediate_size': 17920,
        'num_hidden_layers': 60,
        'num_attention_heads': 52,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    '65b': {
        'vocab_size': 64256,
        'hidden_size': 8192,
        'intermediate_size': 22016,
        'num_hidden_layers': 80,
        'num_attention_heads': 64,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-5,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
    'debug': { # A small model for debugging
        'vocab_size': 64256,
        'hidden_size': 128,
        'intermediate_size': 256,
        'num_hidden_layers': 2,
        'num_attention_heads': 4,
        'max_sequence_length': 2048,
        'initializer_range': 0.02,
        'rms_norm_eps': 1e-6,
        'use_cache': True,
        'tie_word_embeddings': False,
    },
}


class LLaMAConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`~LLaMAModel`]. It is used to instantiate an LLaMA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LLaMA-7B.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~LLaMAModel`] or [`~TFLLaMAModel`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_sequence_length (`int`, *optional*, defaults to 2048):
            Max sequence length for model (for RoPE computation)
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        Example:
    ```python
    >>> from transformers import LLaMAModel, LLaMAConfig
    >>> # Initializing a LLaMA llama-7b style configuration
    >>> configuration = LLaMAConfig()
    >>> # Initializing a model from the llama-7b style configuration
    >>> model = LLaMAModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "llama"

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        max_sequence_length=2048,
        rms_norm_eps=1e-6,
        initializer_range=0.02,
        use_cache=True,
        # pad_token_id=-1,
        bos_token_id=0,
        eos_token_id=1,
        resid_pdrop=0.0,
        embd_pdrop=0.0,
        attn_pdrop=0.0,
        tie_word_embeddings=False,
        remat_block='nothing_saveable',
        remat_attention='',
        remat_mlp='',
        scan_attention=False,
        scan_mlp=False,
        scan_query_chunk_size=1024,
        scan_key_chunk_size=1024,
        scan_mlp_chunk_size=1024,
        fcm_min_ratio=0.0,
        fcm_max_ratio=0.0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.initializer_range = initializer_range
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.max_sequence_length = max_sequence_length
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.remat_block = remat_block
        self.remat_attention = remat_attention
        self.remat_mlp = remat_mlp
        self.scan_attention = scan_attention
        self.scan_mlp = scan_mlp
        self.scan_query_chunk_size = scan_query_chunk_size
        self.scan_key_chunk_size = scan_key_chunk_size
        self.scan_mlp_chunk_size = scan_mlp_chunk_size
        self.fcm_min_ratio = fcm_min_ratio
        self.fcm_max_ratio = fcm_max_ratio
        super().__init__(
            # pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    @classmethod
    def get_default_config(cls, updates=None):
        config = function_args_to_config(cls.__init__)

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())

        return config

    @staticmethod
    def get_jax_mesh(axis_dims):
        return get_jax_mesh(axis_dims, ('dp', 'fsdp', 'mp'))

    @staticmethod
    def get_partition_rules():
        """ Parition rules for GPTJ. Note that these rules are orderd, so that
            the beginning rules match first. It is important to use
            PartitionSpec() instead of None here because JAX does not treat
            None as a pytree leaf.
        """
        return (
            # embeddings
            ("transformer/wte/embedding", PS("mp", "fsdp")),
            # atention
            ("attention/(wq|wk|wv)/kernel", PS("fsdp", "mp")),
            ("attention/wo/kernel", PS("mp", "fsdp")),
            # mlp
            ("feed_forward/w1/kernel", PS("fsdp", "mp")),
            ("feed_forward/w2/kernel", PS("mp", "fsdp")),
            ("feed_forward/w3/kernel", PS("fsdp", "mp")),
            # layer norms
            ("attention_norm/kernel", PS(None)),
            ("ffn_norm/kernel", PS(None)),
            # output head
            ("transformer/ln_f/kernel", PS(None)),
            ("lm_head/kernel", PS("fsdp", "mp")),
            ('.*', PS(None)),
        )

    @staticmethod
    def get_weight_decay_exclusions():
        return (
            "attention_norm/kernel", 
            "ffn_norm/kernel", 
            "transformer/ln_f/kernel", 
        )

    @staticmethod
    def rng_keys():
        return ('params', 'dropout', 'fcm')

    @staticmethod
    def get_tokenizer_config(updates=None):
        config = ConfigDict()
        config.vocab_file = ''
        config.pretrained_model_name_or_path = ''
        config.add_bos_token = False
        config.add_eos_token = False

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def get_tokenizer(cls, config, padding_side='left', truncation_side='right'):
        config = cls.get_tokenizer_config(config)
        if config.vocab_file == '':
            assert config.pretrained_model_name_or_path != '', 'vocab_file or pretrained_model_name_or_path must be specified'
        
        if config.pretrained_model_name_or_path != '':
            tokenizer = AutoTokenizer.from_pretrained(
                config.pretrained_model_name_or_path, 
                add_bos_token=config.add_bos_token,
                add_eos_token=config.add_eos_token,
                padding_side=padding_side,
                truncation_side=truncation_side,
            )
        else:
            tokenizer = LLaMATokenizer(
                vocab_file=config.vocab_file,
                add_bos_token=config.add_bos_token,
                add_eos_token=config.add_eos_token,
                padding_side=padding_side,
                truncation_side=truncation_side,
            )
        return tokenizer

    @classmethod
    def load_config(cls, path):
        if path in LLAMA_STANDARD_CONFIGS:
            return cls.from_dict(LLAMA_STANDARD_CONFIGS[path])
        load_type, load_path = path.split('::', 1)
        if load_type == 'pickle':
            return cls.from_dict(load_pickle(load_path)['llama_config'])
        elif load_type == 'json':
            with open_file(load_path, 'r') as fin:
                raw_config = fin.read()
            return cls.from_dict(json.loads(raw_config))
        else:
            raise ValueError(f'Unsupported load config type: {load_type}')


remat = nn_partitioning.remat

logger = logging.get_logger(__name__)


class RMSNorm(nn.Module):
    dim: int
    eps: float=1e-6
    dtype: jnp.dtype=jnp.float32
    param_dtype: jnp.dtype=jnp.float32

    def setup(self) -> None:
        self.weight = self.param(
            'kernel',
            nn.initializers.ones,
            (self.dim,),
            self.param_dtype,
        )

    def _norm(self, x: jnp.ndarray) -> jnp.ndarray:
        return x * jax.lax.rsqrt(jnp.square(x).mean(-1, keepdims=True) + self.eps)

    def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
        x = x.astype(jnp.promote_types(self.dtype, jnp.float32))
        output = self._norm(x).astype(self.dtype)
        weight = jnp.asarray(self.weight, self.dtype)
        return output * weight

def precompute_freqs_cis(dim: int, end: int, theta: float=10000.0, dtype: jnp.dtype=jnp.float32) -> jnp.ndarray:
    freqs = 1.0 / (theta ** (np.arange(0, dim, 2)[: (dim // 2)].astype(dtype) / dim))
    t = np.arange(end)  # type: ignore
    freqs = np.outer(t, freqs).astype(dtype)  # type: ignore
    sin, cos = np.sin(freqs), np.cos(freqs)
    freqs_cis = np.complex64(cos + 1j * sin)
    return jnp.asarray(freqs_cis)

def apply_rotary_emb(
    xq: jnp.ndarray,
    xk: jnp.ndarray,
    freqs_cis: jnp.ndarray,
    dtype: jnp.dtype=jnp.float32,
) -> Tuple[jnp.ndarray, jnp.ndarray]:

    reshape_xq = xq.astype(jnp.float32).reshape(*xq.shape[:-1], -1, 2)
    reshape_xk = xk.astype(jnp.float32).reshape(*xk.shape[:-1], -1, 2)

    xq_ = jax.lax.complex(reshape_xq[..., 0], reshape_xq[..., 1])
    xk_ = jax.lax.complex(reshape_xk[..., 0], reshape_xk[..., 1])

    # add head dim
    freqs_cis = jnp.reshape(freqs_cis, (*freqs_cis.shape[:2], 1, *freqs_cis.shape[2:]))

    xq_out = xq_ * freqs_cis
    xq_out = jnp.stack((jnp.real(xq_out), jnp.imag(xq_out)), axis=-1).reshape(*xq_out.shape[:-1], -1)

    xk_out = xk_ * freqs_cis
    xk_out = jnp.stack((jnp.real(xk_out), jnp.imag(xk_out)), axis=-1).reshape(*xk_out.shape[:-1], -1)

    return xq_out.astype(dtype), xk_out.astype(dtype)


class FlaxLLaMAAttention(nn.Module):
    config: LLaMAConfig
    dtype: jnp.dtype=jnp.float32
    param_dtype: jnp.dtype=jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]]=None

    def setup(self):
        config = self.config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads

        self.wq = nn.Dense(
            config.num_attention_heads*self.head_dim,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )
        self.wk = nn.Dense(
            config.num_attention_heads*self.head_dim,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )
        self.wv = nn.Dense(
            config.num_attention_heads*self.head_dim,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )
        self.wo = nn.Dense(
            config.hidden_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )

        self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)

        self.causal_mask = make_causal_mask(jnp.ones((1, config.max_sequence_length), dtype="bool"), dtype="bool")

        self.freqs_cis = precompute_freqs_cis(
            self.head_dim,
            config.max_sequence_length * 2,
            dtype=self.dtype,
        )

    def _split_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))

    @nn.compact
    def _concatenate_to_cache(self, key, value, query, attention_mask):
        """
        This function takes projected key, value states from a single input token and concatenates the states to cached
        states from previous steps. This function is slighly adapted from the official Flax repository:
        https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
        """
        # detect if we're initializing by absence of existing cache data.
        is_initialized = self.has_variable("cache", "cached_key")
        cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
        cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
        cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))

        if is_initialized:
            *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
            # update key, value caches with our new 1d spatial slices
            cur_index = cache_index.value
            indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
            key = lax.dynamic_update_slice(cached_key.value, key, indices)
            value = lax.dynamic_update_slice(cached_value.value, value, indices)
            cached_key.value = key
            cached_value.value = value
            num_updated_cache_vectors = query.shape[1]
            cache_index.value = cache_index.value + num_updated_cache_vectors
            # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
            pad_mask = jnp.broadcast_to(
                jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
                tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
            )
            attention_mask = combine_masks(pad_mask, attention_mask)
        return key, value, attention_mask

    def __call__(
        self,
        hidden_states,
        attention_mask,
        position_ids,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        fcm_mask=None,
    ):
        xq, xk, xv = self.wq(hidden_states), self.wk(hidden_states), self.wv(hidden_states)

        xq = with_sharding_constraint(xq, PS(("dp", "fsdp"), None, "mp"))
        xk = with_sharding_constraint(xk, PS(("dp", "fsdp"), None, "mp"))
        xv = with_sharding_constraint(xv, PS(("dp", "fsdp"), None, "mp"))

        xq = self._split_heads(xq)
        xk = self._split_heads(xk)
        xv = self._split_heads(xv)

        freqs_cis = jnp.take(self.freqs_cis, position_ids, axis=0)

        xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis, dtype=self.dtype)

        dropout_rng = None
        if not deterministic and self.config.attn_pdrop > 0.0:
            dropout_rng = self.make_rng("dropout")

        if self.config.scan_attention and not (self.has_variable("cache", "cached_key") or init_cache):
            # doesn't need blockwise attention if we are doing autoregressive decoding since no quadratic memory

            # attention mask without nxn materlization, blockwise_attn will handle the rest
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
            # transform boolean mask into float mask
            attention_bias = lax.select(
                attention_mask > 0,
                jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
                jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
            )
            attn_weights = None
            attn_output = blockwise_attn(
                xq,
                xk,
                xv,
                bias=attention_bias,
                deterministic=deterministic,
                dropout_rng=dropout_rng,
                attn_pdrop=self.config.attn_pdrop,
                causal=True,
                query_chunk_size=self.config.scan_query_chunk_size,
                key_chunk_size=self.config.scan_key_chunk_size,
                dtype=self.dtype,
                policy=get_gradient_checkpoint_policy('nothing_saveable'),
                precision=self.precision,
                float32_logits=True,
                prevent_cse=True,
            )
            attn_output = with_sharding_constraint(attn_output, PS(("dp", "fsdp"), None, "mp", None))
        else:
            query_length, key_length = xq.shape[1], xk.shape[1]

            if self.has_variable("cache", "cached_key"):
                mask_shift = self.variables["cache"]["cache_index"]
                max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
                causal_mask = lax.dynamic_slice(
                    self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
                )
            else:
                causal_mask = self.causal_mask[:, :, :query_length, :key_length]

            batch_size = hidden_states.shape[0]
            causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])

            attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
            attention_mask = combine_masks(attention_mask, causal_mask, fcm_mask)

            # During fast autoregressive decoding, we feed one position at a time,
            # and cache the keys and values step by step.
            if self.has_variable("cache", "cached_key") or init_cache:
                xk, xv, attention_mask = self._concatenate_to_cache(xk, xv, xq, attention_mask)

            # transform boolean mask into float mask
            attention_bias = lax.select(
                attention_mask > 0,
                jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
                jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
            )
            attn_weights = dot_product_attention_weights(
                xq,
                xk,
                bias=attention_bias,
                dropout_rng=dropout_rng,
                dropout_rate=self.config.attn_pdrop,
                deterministic=deterministic,
                dtype=jnp.promote_types(self.dtype, jnp.float32),
                precision=self.precision,
            )
            attn_weights = with_sharding_constraint(attn_weights, PS(("dp", "fsdp"), "mp", None, None))
            attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, xv, precision=self.precision)

        attn_output = self._merge_heads(attn_output)
        attn_output = self.wo(attn_output)
        attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
        outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
        return outputs


class FlaxLLaMAMLP(nn.Module):
    config: LLaMAConfig
    dtype: jnp.dtype=jnp.float32
    param_dtype: jnp.dtype=jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]]=None

    def setup(self) -> None:
        config = self.config

        self.w1 = nn.Dense(
            config.intermediate_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )
        self.w2 = nn.Dense(
            config.hidden_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )
        self.w3 = nn.Dense(
            config.intermediate_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            precision=self.precision,
        )
        self.dropout = nn.Dropout(rate=self.config.resid_pdrop)

    def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
        x = self.w2(nn.silu(self.w1(x)) * self.w3(x))
        x = self.dropout(x, deterministic=deterministic)
        return x


class FlaxLLaMABlock(nn.Module):
    config: LLaMAConfig
    dtype: jnp.dtype=jnp.float32
    param_dtype: jnp.dtype=jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]]=None

    def setup(self) -> None:
        attention_module = FlaxLLaMAAttention
        mlp_module = FlaxLLaMAMLP
        if self.config.remat_attention != '':
            attention_module = remat(
                FlaxLLaMAAttention, static_argnums=(3, 4, 5),
                policy=get_gradient_checkpoint_policy(self.config.remat_attention),
                prevent_cse=True,
            )
        if self.config.remat_mlp != '':
            mlp_module = remat(
                FlaxLLaMAMLP, static_argnums=(1,),
                policy=get_gradient_checkpoint_policy(self.config.remat_mlp),
                prevent_cse=True,
            )

        self.attention = attention_module(
            self.config,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision,
        )
        self.feed_forward = mlp_module(
            self.config,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision,
        )
        self.attention_norm = RMSNorm(
            self.config.hidden_size,
            eps=self.config.rms_norm_eps,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
        )
        self.ffn_norm = RMSNorm(
            self.config.hidden_size,
            eps=self.config.rms_norm_eps,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
        )

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        position_ids=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        fcm_mask: Optional[jnp.ndarray] = None,
    ):
        attn_outputs = self.attention(
            self.attention_norm(hidden_states),
            attention_mask,
            position_ids,
            deterministic,
            init_cache,
            output_attentions,
            fcm_mask,
        )
        attn_output = attn_outputs[0]
        hidden_states = hidden_states + attn_output

        feed_forward_input = self.ffn_norm(hidden_states)

        if self.config.scan_mlp:
            feed_forward_hidden_states = blockwise_ffn(
                self.feed_forward,
                feed_forward_input,
                self.config.scan_mlp_chunk_size,
                deterministic,
            )
        else:
            feed_forward_hidden_states = self.feed_forward(
                feed_forward_input,
                deterministic,
            )
        feed_forward_hidden_states = with_sharding_constraint(feed_forward_hidden_states, PS(("dp", "fsdp"), None, "mp"))

        hidden_states = hidden_states + feed_forward_hidden_states

        return (hidden_states,) + attn_outputs[1:]


class FlaxLLaMAPreTrainedModel(FlaxPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = LLaMAConfig
    base_model_prefix = "transformer"
    module_class: nn.Module = None

    def __init__(
        self,
        config: LLaMAConfig,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
        # init input tensors
        input_ids = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        if self.config.add_cross_attention:
            encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
            encoder_attention_mask = attention_mask
            module_init_outputs = self.module.init(
                rngs,
                input_ids,
                attention_mask,
                position_ids,
                encoder_hidden_states,
                encoder_attention_mask,
                return_dict=False,
            )
        else:
            module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)

        random_params = module_init_outputs["params"]

        if params is not None:
            random_params = flatten_dict(unfreeze(random_params))
            params = flatten_dict(unfreeze(params))
            for missing_key in self._missing_keys:
                params[missing_key] = random_params[missing_key]
            self._missing_keys = set()
            return freeze(unflatten_dict(params))
        else:
            return random_params

    def init_cache(self, batch_size, max_length):
        r"""
        Args:
            batch_size (`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
        """
        # init input variables to retrieve cache
        input_ids = jnp.ones((batch_size, max_length))
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return init_variables["cache"]

    @add_start_docstrings_to_model_forward("")
    def __call__(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        params: dict = None,
        past_key_values: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        batch_size, sequence_length = input_ids.shape

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")

            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        outputs = self.module.apply(
            inputs,
            jnp.array(input_ids, dtype="i4"),
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            not train,
            False,
            output_attentions,
            output_hidden_states,
            return_dict,
            rngs=rngs,
            mutable=mutable,
        )

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs, past_key_values = outputs
            outputs["past_key_values"] = unfreeze(past_key_values["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past_key_values = outputs
            outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]

        return outputs


class FlaxLLaMABlockCollection(nn.Module):
    config: LLaMAConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype=jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]]=None

    def setup(self):
        block = FlaxLLaMABlock
        if self.config.remat_block != '':
            block = remat(
                FlaxLLaMABlock, static_argnums=(3, 4, 5),
                policy=get_gradient_checkpoint_policy(self.config.remat_block)
            )
        self.blocks = [
            block(
                self.config,
                name=str(i),
                dtype=self.dtype,
                param_dtype=self.param_dtype,
                precision=self.precision
            ) for i in range(self.config.num_hidden_layers)
        ]

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        position_ids=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        if not deterministic and self.config.fcm_max_ratio > 0:
            # Apply forgetful causal mask
            batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1]
            fcm_ratio = jax.random.uniform(
                self.make_rng('fcm'), shape=(batch_size, 1, 1, 1),
                minval=self.config.fcm_min_ratio,
                maxval=self.config.fcm_max_ratio
            )
            fcm_mask = jax.random.uniform(
                self.make_rng('fcm'),
                shape=(batch_size, 1, 1, seq_length)
            ) > fcm_ratio
            fcm_mask = fcm_mask.at[:, :, :, 0].set(True)
            fcm_mask = fcm_mask.astype('bool')
        else:
            fcm_mask = None

        for block in self.blocks:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = block(
                hidden_states,
                attention_mask,
                position_ids,
                deterministic,
                init_cache,
                output_attentions,
                fcm_mask,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions += (layer_outputs[1],)

        # this contains possible `None` values - `FlaxGPTJModule` will filter them out
        outputs = (hidden_states, all_hidden_states, all_attentions)

        return outputs


class FlaxLLaMAModule(nn.Module):
    config: LLaMAConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype=jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]]=None

    def setup(self):
        self.embed_dim = self.config.hidden_size

        self.wte = nn.Embed(
            self.config.vocab_size,
            self.config.hidden_size,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
            param_dtype=self.param_dtype,
        )
        self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
        self.h = FlaxLLaMABlockCollection(self.config, dtype=self.dtype, param_dtype=self.param_dtype, precision=self.precision)
        self.ln_f = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps, dtype=self.dtype, param_dtype=self.param_dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        position_ids,
        deterministic=True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        input_embeds = self.wte(input_ids.astype("i4"))

        hidden_states = self.dropout(input_embeds, deterministic=deterministic)

        outputs = self.h(
            hidden_states,
            attention_mask,
            position_ids=position_ids,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = outputs[1] + (hidden_states,)
            outputs = (hidden_states, all_hidden_states) + outputs[2:]
        else:
            outputs = (hidden_states,) + outputs[1:]

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=outputs[1],
            attentions=outputs[-1],
        )

@add_start_docstrings("", "")
class FlaxLLaMAModel(FlaxLLaMAPreTrainedModel):
    module_class = FlaxLLaMAModule

# append_call_sample_docstring(
#     FlaxLLaMAModel,
#     _TOKENIZER_FOR_DOC,
#     _CHECKPOINT_FOR_DOC,
#     FlaxCausalLMOutput,
#     _CONFIG_FOR_DOC,
# )

class FlaxLLaMAForCausalLMModule(nn.Module):
    config: LLaMAConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype=jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]]=None

    def setup(self):
        self.transformer = FlaxLLaMAModule(self.config, dtype=self.dtype)
        self.lm_head = nn.Dense(
            self.config.vocab_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            precision=self.precision,
        )

    def __call__(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        batch_size, seq_length = input_ids.shape
        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)
        if position_ids is None:
            position_ids = jnp.broadcast_to(
                jnp.clip(jnp.cumsum(attention_mask, axis=-1) - 1, a_min=0),
                (batch_size, seq_length)
            )
        outputs = self.transformer(
            input_ids,
            attention_mask,
            position_ids,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        if self.config.tie_word_embeddings:
            shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
            lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
        else:
            lm_logits = self.lm_head(hidden_states)

        if not return_dict:
            return (lm_logits,) + outputs[1:]

        return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)


@add_start_docstrings("", "")
class FlaxLLaMAForCausalLM(FlaxLLaMAPreTrainedModel):
    module_class = FlaxLLaMAForCausalLMModule

    def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
        # initializing the cache
        batch_size, seq_length = input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since GPTJ uses a causal mask, those positions are masked anyways.
        # Thus we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if attention_mask is not None:
            position_ids = attention_mask.cumsum(axis=-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
        else:
            position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))

        return {
            "past_key_values": past_key_values,
            "attention_mask": extended_attention_mask,
            "position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
        return model_kwargs

# append_call_sample_docstring(
#     FlaxGPTJForCausalLM,
#     _TOKENIZER_FOR_DOC,
#     _CHECKPOINT_FOR_DOC,
#     FlaxCausalLMOutput,
#     _CONFIG_FOR_DOC,
# )



VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}

PRETRAINED_VOCAB_FILES_MAP = {}


class LLaMATokenizer(PreTrainedTokenizer):
    """
    Construct a LLaMA tokenizer. Based on byte-level Byte-Pair-Encoding.
    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        vocab_file,
        unk_token="<unk>",
        bos_token="<s>",
        eos_token="</s>",
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        add_bos_token=False,
        add_eos_token=False,
        **kwargs,
    ):
        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
        super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
        self.vocab_file = vocab_file
        self.add_bos_token = add_bos_token
        self.add_eos_token = add_eos_token
        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)

        with tempfile.NamedTemporaryFile() as tfile:
            with open_file(self.vocab_file, 'rb') as fin:
                tfile.write(fin.read())
                tfile.flush()
                tfile.seek(0)
            self.sp_model.Load(tfile.name)
        """ Initialisation"""
        self.add_special_tokens(dict(
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
        ))
        self.pad_token_id = self.unk_token_id

    @property
    def vocab_size(self):
        """Returns vocab size"""
        return self.sp_model.get_piece_size()

    @property
    def bos_token_id(self) -> Optional[int]:
        return self.sp_model.bos_id()

    @property
    def eos_token_id(self) -> Optional[int]:
        return self.sp_model.eos_id()

    def get_vocab(self):
        """Returns vocab as a dict"""
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text):
        """Returns a tokenized string."""
        return self.sp_model.encode(text, out_type=str)

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.sp_model.piece_to_id(token)

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        token = self.sp_model.IdToPiece(index)
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        current_sub_tokens = []
        out_string = ""
        prev_is_special = False
        for token in tokens:
            # make sure that special tokens are not decoded using sentencepiece model
            if token in self.all_special_tokens:
                if not prev_is_special:
                    out_string += " "
                out_string += self.sp_model.decode(current_sub_tokens) + token
                prev_is_special = True
                current_sub_tokens = []
            else:
                current_sub_tokens.append(token)
                prev_is_special = False
        out_string += self.sp_model.decode(current_sub_tokens)
        return out_string.strip()

    def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
        """
        Save the vocabulary and special tokens file to a directory.
        Args:
            save_directory (`str`):
                The directory in which to save the vocabulary.
        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, "wb") as fi:
                content_spiece_model = self.sp_model.serialized_model_proto()
                fi.write(content_spiece_model)

        return (out_vocab_file,)

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        if self.add_bos_token:
            bos_token_ids = [self.bos_token_id]
        else:
            bos_token_ids = []

        output = bos_token_ids + token_ids_0

        if token_ids_1 is not None:
            output = output + token_ids_1

        if self.add_eos_token:
            output = output + [self.eos_token_id]

        return output

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.
        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.
        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
        use of token type ids, therefore a list of zeros is returned.
        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
        Returns:
            `List[int]`: List of zeros.
        """
        eos = [self.eos_token_id]

        if token_ids_1 is None:
            return len(token_ids_0 + eos) * [0]
        return len(token_ids_0 + eos + token_ids_1 + eos) * [0]