from datasets import load_dataset, load_from_disk
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
from transformers import AutoConfig, AutoTokenizer
model_dir = "./" # ${MODEL_DIR}
# load roberta-large config
config = AutoConfig.from_pretrained("roberta-large")
config.save_pretrained(model_dir)
# load dataset
dataset = load_from_disk("/researchdisk1/data/training_data_full")
dataset = dataset["train"]
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=config.vocab_size, min_frequency=2, special_tokens=[
"",
"",
"",
"",
"",
])
# Save files to disk
tokenizer.save(f"{model_dir}/tokenizer.json")
tokenizer = AutoTokenizer.from_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)