|
import functools |
|
import tensorflow as tf |
|
import seqio |
|
import t5.data |
|
from typing import Optional, Sequence |
|
|
|
|
|
|
|
def prepend_prompt(dataset: tf.data.Dataset, |
|
output_features: seqio.preprocessors.OutputFeaturesType, |
|
sequence_length: Optional[ |
|
seqio.preprocessors.SequenceLengthType] = None, |
|
prompt_mode: str = "", |
|
key: str = "inputs", |
|
mode: str = "") -> tf.data.Dataset: |
|
"""Prepends a prompt at the beginning of an input sequence.""" |
|
del sequence_length |
|
if prompt_mode and mode: |
|
|
|
out_keys = list(output_features.keys()) |
|
prompt_tokens = output_features[out_keys[0] |
|
].vocabulary.encode_tf(prompt_mode) |
|
|
|
def add_to_inputs(x): |
|
x[key] = tf.concat([prompt_tokens, x[key]], axis=0) |
|
return x |
|
|
|
dataset = dataset.map(add_to_inputs) |
|
return dataset |
|
|
|
|
|
def split_tokens_to_inputs_length(dataset, sequence_length, |
|
output_features, **kwargs): |
|
max_tokens = sequence_length['inputs'] |
|
|
|
out_keys = list(output_features.keys()) |
|
if output_features[out_keys[0]].add_eos: |
|
|
|
max_tokens -= 1 |
|
|
|
return t5.data.preprocessors.split_tokens(dataset, max_tokens_per_segment=max_tokens, **kwargs) |
|
|
|
|
|
def prefix_lm(dataset, sequence_length, output_features): |
|
"""Prefix language modeling objective used in Raffel et al. 2019.""" |
|
ds = dataset |
|
ds = t5.data.preprocessors.select_random_chunk(ds, output_features=output_features, |
|
feature_key='targets', max_length=65536) |
|
ds = split_tokens_to_inputs_length(ds, output_features=output_features, |
|
sequence_length=sequence_length) |
|
ds = t5.data.preprocessors.denoise( |
|
ds, |
|
output_features, |
|
inputs_fn=t5.data.preprocessors.drop_nonnoise_tokens, |
|
targets_fn=t5.data.preprocessors.drop_noise_tokens, |
|
noise_density=0.5, |
|
noise_mask_fn=t5.data.preprocessors.random_prefix_noise_mask, |
|
) |
|
return ds |
|
|
|
|
|
|
|
def ul2_objective(dataset: tf.data.Dataset, |
|
sequence_length: seqio.preprocessors.SequenceLengthType, |
|
output_features: seqio.preprocessors.OutputFeaturesType, |
|
use_prefix_lm_task: bool = False, |
|
rates: Optional[Sequence[float]] = None, |
|
mean_noise_span_lengths: Sequence[float] = (3.0,), |
|
noise_densities: Sequence[float] = (0.15,), |
|
shard_ds: bool = True, |
|
optional_task_prefixes: Optional[Sequence[str]] = None, |
|
input_feature_key: str = "inputs", |
|
merge_examples_to_reduce_padding: bool = True, |
|
reserved_for_packing: bool = None, |
|
seed: int = 7) -> tf.data.Dataset: |
|
"""UL2-like pre-training objectives. |
|
This preprocessor amounts to calling the 'span_corruption' function several |
|
times with different values of 'noise_density' and 'mean_noise_span_length'. |
|
We either shard or copy the dataset, then apply each function to each shard. |
|
Add S-denoising (prefixLM) using use_prefix_lm_task. |
|
Args: |
|
dataset: A tf.data.Dataset with dictionaries containing the key 'input_feature_key'. |
|
sequence_length: dict mapping of feature key to int length for that feature. |
|
output_features: mapping of keys to features. |
|
use_prefix_lm_task: <bool> If True, include PrefixLM in the task mix. |
|
rates: <Optional<List<float>> List of rates per task. If None, tasks are sampled uniformly. |
|
mean_noise_span_lengths: List of mean number of tokens per masked span per example. |
|
noise_densities: List of what fraction of the tokens to mask. |
|
shard_ds: <bool> If True, shard dataset per objective. |
|
optional_task_prefixes: <Optional<list<str>> Strings to prepend for each corruption scheme. NOTE: If including prefixLM task, it must be the last prefix. |
|
input_feature_key: which feature to use from the dataset as the input text tokens. |
|
merge_examples_to_reduce_padding: if True, combines multiple input examples to reduce padding. |
|
reserved_for_packing: if specified, reduces the desired inputs length by the specified amount to enable multiple examples to be packed together downstream. |
|
seed: tf.int64 for controlling the random choice of spans. |
|
Returns: |
|
a dataset |
|
""" |
|
|
|
if optional_task_prefixes: |
|
num_tasks = len(noise_densities) + int(use_prefix_lm_task) |
|
valid_number_of_prefixes = num_tasks == len(optional_task_prefixes) |
|
if not valid_number_of_prefixes: |
|
raise ValueError( |
|
"Number of task prefixes must match number of tasks.") |
|
inputs_length = sequence_length[input_feature_key] |
|
input_lengths, targets_lengths = [], [] |
|
sequence_lengths = {x: y for x, y in sequence_length.items()} |
|
if reserved_for_packing: |
|
inputs_length -= reserved_for_packing |
|
for x, y in sequence_length.items(): |
|
sequence_lengths[x] = y - reserved_for_packing |
|
hyperparams = list(zip(mean_noise_span_lengths, noise_densities)) |
|
for mean_noise_span_length, noise_density in hyperparams: |
|
input_length, targets_length = t5.data.preprocessors.random_spans_helper( |
|
extra_tokens_per_span_inputs=1, |
|
extra_tokens_per_span_targets=1, |
|
inputs_length=inputs_length, |
|
mean_noise_span_length=mean_noise_span_length, |
|
noise_density=noise_density) |
|
input_lengths.append(input_length) |
|
targets_lengths.append(targets_length) |
|
|
|
if sequence_length["targets"] < targets_length: |
|
upper_bound = max(targets_lengths) |
|
raise ValueError( |
|
f'Expected max targets length for span corruption ({upper_bound}) is ' |
|
f'greater than configured targets length ' |
|
f"({sequence_length['targets']})") |
|
ds = dataset |
|
ds = t5.data.preprocessors.select_random_chunk( |
|
ds, |
|
output_features=output_features, |
|
feature_key="targets", |
|
max_length=65536) |
|
if merge_examples_to_reduce_padding: |
|
ds = t5.data.preprocessors.reduce_concat_tokens( |
|
ds, feature_key="targets", batch_size=128) |
|
num_shards = len(input_lengths) + int(use_prefix_lm_task) |
|
if shard_ds: |
|
ds_shards = [ds.shard(num_shards, i) for i in range(num_shards)] |
|
else: |
|
ds_shards = [ds for _ in range(num_shards)] |
|
processed_ds = [] |
|
hyperparams = zip(input_lengths, hyperparams, range(num_shards)) |
|
for input_length, (noise_span_length, noise_density), i in hyperparams: |
|
ds = ds_shards[i] |
|
ds = t5.data.preprocessors.split_tokens( |
|
ds, |
|
feature_key="targets", |
|
min_tokens_per_segment=None, |
|
max_tokens_per_segment=input_length) |
|
ds = t5.data.preprocessors.denoise( |
|
ds, |
|
output_features, |
|
inputs_fn=t5.data.preprocessors.noise_span_to_unique_sentinel, |
|
targets_fn=t5.data.preprocessors.nonnoise_span_to_unique_sentinel, |
|
noise_density=noise_density, |
|
noise_mask_fn=functools.partial( |
|
t5.data.preprocessors.random_spans_noise_mask, |
|
mean_noise_span_length=noise_span_length), |
|
input_feature_key=input_feature_key) |
|
if optional_task_prefixes: |
|
ds = prepend_prompt( |
|
ds, |
|
output_features, |
|
prompt_mode=optional_task_prefixes[i], |
|
mode=optional_task_prefixes[i], |
|
key=input_feature_key) |
|
processed_ds.append(ds) |
|
if use_prefix_lm_task: |
|
ds = ds_shards[-1] |
|
ds = prefix_lm( |
|
ds, sequence_lengths, output_features) |
|
if optional_task_prefixes: |
|
ds = prepend_prompt( |
|
ds, |
|
output_features, |
|
prompt_mode=optional_task_prefixes[-1], |
|
mode=optional_task_prefixes[-1], |
|
key=input_feature_key) |
|
processed_ds.append(ds) |
|
ds = tf.data.experimental.sample_from_datasets(processed_ds, rates, seed) |
|
return ds |
|
|