update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-base-fi-voxpopuli-v2-finetuned
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-base-fi-voxpopuli-v2-finetuned
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base-fi-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-fi-voxpopuli-v2) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1316
|
18 |
+
- Wer: 0.1498
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 64
|
39 |
+
- eval_batch_size: 64
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 500
|
44 |
+
- num_epochs: 10
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 1.575 | 0.33 | 500 | 0.7454 | 0.7048 |
|
52 |
+
| 0.5838 | 0.66 | 1000 | 0.2377 | 0.2608 |
|
53 |
+
| 0.5692 | 1.0 | 1500 | 0.2014 | 0.2244 |
|
54 |
+
| 0.5112 | 1.33 | 2000 | 0.1885 | 0.2013 |
|
55 |
+
| 0.4857 | 1.66 | 2500 | 0.1881 | 0.2120 |
|
56 |
+
| 0.4821 | 1.99 | 3000 | 0.1603 | 0.1894 |
|
57 |
+
| 0.4531 | 2.32 | 3500 | 0.1594 | 0.1865 |
|
58 |
+
| 0.4411 | 2.65 | 4000 | 0.1641 | 0.1874 |
|
59 |
+
| 0.4437 | 2.99 | 4500 | 0.1545 | 0.1874 |
|
60 |
+
| 0.4191 | 3.32 | 5000 | 0.1565 | 0.1770 |
|
61 |
+
| 0.4158 | 3.65 | 5500 | 0.1696 | 0.1867 |
|
62 |
+
| 0.4032 | 3.98 | 6000 | 0.1561 | 0.1746 |
|
63 |
+
| 0.4003 | 4.31 | 6500 | 0.1432 | 0.1749 |
|
64 |
+
| 0.4059 | 4.64 | 7000 | 0.1390 | 0.1690 |
|
65 |
+
| 0.4019 | 4.98 | 7500 | 0.1291 | 0.1646 |
|
66 |
+
| 0.3811 | 5.31 | 8000 | 0.1485 | 0.1755 |
|
67 |
+
| 0.3955 | 5.64 | 8500 | 0.1351 | 0.1659 |
|
68 |
+
| 0.3562 | 5.97 | 9000 | 0.1328 | 0.1614 |
|
69 |
+
| 0.3646 | 6.3 | 9500 | 0.1329 | 0.1584 |
|
70 |
+
| 0.351 | 6.64 | 10000 | 0.1342 | 0.1554 |
|
71 |
+
| 0.3408 | 6.97 | 10500 | 0.1422 | 0.1509 |
|
72 |
+
| 0.3562 | 7.3 | 11000 | 0.1309 | 0.1528 |
|
73 |
+
| 0.3335 | 7.63 | 11500 | 0.1305 | 0.1506 |
|
74 |
+
| 0.3491 | 7.96 | 12000 | 0.1365 | 0.1560 |
|
75 |
+
| 0.3538 | 8.29 | 12500 | 0.1293 | 0.1512 |
|
76 |
+
| 0.3338 | 8.63 | 13000 | 0.1328 | 0.1511 |
|
77 |
+
| 0.3509 | 8.96 | 13500 | 0.1304 | 0.1520 |
|
78 |
+
| 0.3431 | 9.29 | 14000 | 0.1360 | 0.1517 |
|
79 |
+
| 0.3309 | 9.62 | 14500 | 0.1328 | 0.1514 |
|
80 |
+
| 0.3252 | 9.95 | 15000 | 0.1316 | 0.1498 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.19.1
|
86 |
+
- Pytorch 1.11.0+cu102
|
87 |
+
- Datasets 2.2.1
|
88 |
+
- Tokenizers 0.11.0
|