--- license: apache-2.0 language: - fi tags: - speech-recognition --- Example how to use with WhisperX (https://github.com/m-bain/whisperX) ```python import whisperx device = "cuda" audio_file = "oma_nauhoitus_16kHz.wav" batch_size = 16 # reduce if low on GPU mem compute_type = "float16" # change to "int8" if low on GPU mem (may reduce accuracy) # 1. Transcribe with original whisper (batched) model = whisperx.load_model("Finnish-NLP/whisper-large-finnish-v3-ct2", device, compute_type=compute_type) audio = whisperx.load_audio(audio_file) result = model.transcribe(audio, batch_size=batch_size) print(result["segments"]) # before alignment ``` How to use in Python with faster-whisper (https://github.com/SYSTRAN/faster-whisper) ```python import faster_whisper model = faster_whisper.WhisperModel("Finnish-NLP/whisper-large-finnish-v3-ct2") print("model loaded") segments, info = model.transcribe(audio_path, word_timestamps=True, beam_size=5, language="fi") for segment in segments: for word in segment.words: print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word)) ```