FlavienDeseure
commited on
Commit
•
2f669ce
1
Parent(s):
bf5d2b0
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.42 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98b917bedf0f7ec3d656066893706fc3bd58c7b1edbf6093bf3d77123b673735
|
3 |
+
size 108095
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe6d5cfd550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe6d5d72b40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678116066488532779,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbOLWPlMubD1tPRc/bOLWPlMubD1tPRc/bOLWPlMubD1tPRc/bOLWPlMubD1tPRc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADV3HPfuQ1r8X7Ak9iA94vzVkkr9zmy2/J9euP9sv+L4sSZS/Lpm2PnLOyj2AyOa9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABs4tY+Uy5sPW09Fz8shR08OkTMuflvBzxs4tY+Uy5sPW09Fz8shR08OkTMuflvBzxs4tY+Uy5sPW09Fz8shR08OkTMuflvBzxs4tY+Uy5sPW09Fz8shR08OkTMuflvBzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.4196962 0.05766137 0.59078103]\n [0.4196962 0.05766137 0.59078103]\n [0.4196962 0.05766137 0.59078103]\n [0.4196962 0.05766137 0.59078103]]",
|
60 |
+
"desired_goal": "[[ 0.09734545 -1.6762995 0.03367242]\n [-0.968987 -1.1436831 -0.6781532 ]\n [ 1.3659409 -0.4847401 -1.158483 ]\n [ 0.35663742 0.09902658 -0.11268711]]",
|
61 |
+
"observation": "[[ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]\n [ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]\n [ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]\n [ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANYu0PWw76D1ynIw+7S3avePDFTwpyk0+Vqqwu8T5wT11UhQ9gHR0vcIKKD1njAk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.08815614 0.11339459 0.27463108]\n [-0.10653291 0.00914094 0.20096649]\n [-0.0053914 0.09471467 0.03621145]\n [-0.05968142 0.04102588 0.13432465]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxsGlY86z4L+UhpRSlIwBbJRLMowBdJRHQKbge4tHxz91fZQoaAZoCWgPQwhOl8XE5mPmv5SGlFKUaBVLMmgWR0Cm4Bbf51vEdX2UKGgGaAloD0MIyJi7lpAP7b+UhpRSlGgVSzJoFkdApt/BHww0wnV9lChoBmgJaA9DCBWt3AvMiu+/lIaUUpRoFUsyaBZHQKbfVCngpBp1fZQoaAZoCWgPQwid2hmmtpTxv5SGlFKUaBVLMmgWR0Cm4kzEJjUedX2UKGgGaAloD0MIsyjsougB4b+UhpRSlGgVSzJoFkdApuHoyqMm4XV9lChoBmgJaA9DCOnzUUZcgPC/lIaUUpRoFUsyaBZHQKbhkvFm4Al1fZQoaAZoCWgPQwhSfecXJWjnv5SGlFKUaBVLMmgWR0Cm4SYqPOpsdX2UKGgGaAloD0MINZvHYTB/5L+UhpRSlGgVSzJoFkdApuQrUutfX3V9lChoBmgJaA9DCCWxpNx9DuC/lIaUUpRoFUsyaBZHQKbjxn+Q2dd1fZQoaAZoCWgPQwhl/PuMCwffv5SGlFKUaBVLMmgWR0Cm43CnYQJ5dX2UKGgGaAloD0MIIsZrXtVZ3r+UhpRSlGgVSzJoFkdApuMDvCuU2XV9lChoBmgJaA9DCNkh/mFLj9G/lIaUUpRoFUsyaBZHQKbmGWtU4rB1fZQoaAZoCWgPQwhLyXISSl/fv5SGlFKUaBVLMmgWR0Cm5bTQVsUJdX2UKGgGaAloD0MIaVN1j2yu4L+UhpRSlGgVSzJoFkdApuVe912aD3V9lChoBmgJaA9DCLmMmxpovuK/lIaUUpRoFUsyaBZHQKbk8o1DSgJ1fZQoaAZoCWgPQwiZRpOLMbDev5SGlFKUaBVLMmgWR0Cm5/uUdJardX2UKGgGaAloD0MICf63kh0b4b+UhpRSlGgVSzJoFkdApueWzyBkJHV9lChoBmgJaA9DCOPD7GXbaei/lIaUUpRoFUsyaBZHQKbnQSzPa+N1fZQoaAZoCWgPQwgL68a7I2Plv5SGlFKUaBVLMmgWR0Cm5tRW1c+rdX2UKGgGaAloD0MISwLU1LK15L+UhpRSlGgVSzJoFkdApundFOO803V9lChoBmgJaA9DCKiOVUrP9Oe/lIaUUpRoFUsyaBZHQKbpeKfnOjZ1fZQoaAZoCWgPQwimRX2SO2zWv5SGlFKUaBVLMmgWR0Cm6SK8tf5UdX2UKGgGaAloD0MIyJV6FoTy47+UhpRSlGgVSzJoFkdApui1z4k/r3V9lChoBmgJaA9DCJ3YQ/tYwdy/lIaUUpRoFUsyaBZHQKbrTczqKP51fZQoaAZoCWgPQwiqnWFqSx3Tv5SGlFKUaBVLMmgWR0Cm6uhGx2SudX2UKGgGaAloD0MIXcXiN4WV8b+UhpRSlGgVSzJoFkdApuqRof0VanV9lChoBmgJaA9DCCk8aHbd2+K/lIaUUpRoFUsyaBZHQKbqI9vjwQV1fZQoaAZoCWgPQwj4w89/D17vv5SGlFKUaBVLMmgWR0Cm7GfXXiBHdX2UKGgGaAloD0MIRwVOtoE75L+UhpRSlGgVSzJoFkdApuwCSX+l03V9lChoBmgJaA9DCLitLTwvleS/lIaUUpRoFUsyaBZHQKbrq4xUNrl1fZQoaAZoCWgPQwj67laW6Czhv5SGlFKUaBVLMmgWR0Cm6z3A/LTydX2UKGgGaAloD0MI9ODurN1247+UhpRSlGgVSzJoFkdApu1/hddE9nV9lChoBmgJaA9DCIM1zqYjgNq/lIaUUpRoFUsyaBZHQKbtGelsP8R1fZQoaAZoCWgPQwiESIYcW0/mv5SGlFKUaBVLMmgWR0Cm7MMwUQCkdX2UKGgGaAloD0MImE9WDFcH3b+UhpRSlGgVSzJoFkdApuxVgBtDUnV9lChoBmgJaA9DCJ8e2zLgLM2/lIaUUpRoFUsyaBZHQKbum3G4qgB1fZQoaAZoCWgPQwip+wCkNnHWv5SGlFKUaBVLMmgWR0Cm7jXqJMxodX2UKGgGaAloD0MI8N5RY0LM1L+UhpRSlGgVSzJoFkdApu3fL5h0AHV9lChoBmgJaA9DCLO3lPPF3tm/lIaUUpRoFUsyaBZHQKbtcWSlnAZ1fZQoaAZoCWgPQwiFQgQcQpXfv5SGlFKUaBVLMmgWR0Cm77Ha37UHdX2UKGgGaAloD0MImbfqOlRT2r+UhpRSlGgVSzJoFkdApu9MTQE6k3V9lChoBmgJaA9DCDyh15/E59q/lIaUUpRoFUsyaBZHQKbu9ZSNwR51fZQoaAZoCWgPQwglehnFckviv5SGlFKUaBVLMmgWR0Cm7oe18b71dX2UKGgGaAloD0MI2ozTEFX417+UhpRSlGgVSzJoFkdApvDV5jYqXnV9lChoBmgJaA9DCEzg1t081eO/lIaUUpRoFUsyaBZHQKbwcH0K7Zp1fZQoaAZoCWgPQwiiCn+GN2vav5SGlFKUaBVLMmgWR0Cm8Bn8KohqdX2UKGgGaAloD0MIQ61p3nEK4b+UhpRSlGgVSzJoFkdApu+scuJ1q3V9lChoBmgJaA9DCOCfUiXK3ta/lIaUUpRoFUsyaBZHQKbx7MlkYoB1fZQoaAZoCWgPQwjc8/xpozrfv5SGlFKUaBVLMmgWR0Cm8YdFfAsTdX2UKGgGaAloD0MIwqG3eHhP7r+UhpRSlGgVSzJoFkdApvEwp+c6NnV9lChoBmgJaA9DCKmhDcAGxOO/lIaUUpRoFUsyaBZHQKbwwtWdVed1fZQoaAZoCWgPQwi22O2zyszgv5SGlFKUaBVLMmgWR0Cm8wmmUGFBdX2UKGgGaAloD0MITaJe8GnO5r+UhpRSlGgVSzJoFkdApvKkJa7mMnV9lChoBmgJaA9DCMV1jCsuDuO/lIaUUpRoFUsyaBZHQKbyTXUYsNF1fZQoaAZoCWgPQwhUqG4u/rbTv5SGlFKUaBVLMmgWR0Cm8d+6qbSadX2UKGgGaAloD0MIJqYLsfojzL+UhpRSlGgVSzJoFkdApvQf6Eal13V9lChoBmgJaA9DCHrCEg8oG+G/lIaUUpRoFUsyaBZHQKbzukTHsC11fZQoaAZoCWgPQwj9LmzNVl7dv5SGlFKUaBVLMmgWR0Cm82N9QXQ/dX2UKGgGaAloD0MIdZKtLqcE2b+UhpRSlGgVSzJoFkdApvL1t2s7uHV9lChoBmgJaA9DCONTAIxnUOO/lIaUUpRoFUsyaBZHQKb1SWszVMF1fZQoaAZoCWgPQwgkm6vmOSLlv5SGlFKUaBVLMmgWR0Cm9OPhqCYkdX2UKGgGaAloD0MIQdXo1QCl0r+UhpRSlGgVSzJoFkdApvSNPUKArnV9lChoBmgJaA9DCAddwqG3+Oi/lIaUUpRoFUsyaBZHQKb0H3Zf2K51fZQoaAZoCWgPQwj3IW+5+jHiv5SGlFKUaBVLMmgWR0Cm9lzjm0VrdX2UKGgGaAloD0MIf7+YLVmV6L+UhpRSlGgVSzJoFkdApvX3uiN83XV9lChoBmgJaA9DCJP+XgoPmu6/lIaUUpRoFUsyaBZHQKb1oSGrS3N1fZQoaAZoCWgPQwgotRfRdszgv5SGlFKUaBVLMmgWR0Cm9TNipeeGdX2UKGgGaAloD0MIqtVXVwVq4r+UhpRSlGgVSzJoFkdApvdxRCQcP3V9lChoBmgJaA9DCEXXhR+cz+S/lIaUUpRoFUsyaBZHQKb3C8CgbqB1fZQoaAZoCWgPQwjIz0aum1Luv5SGlFKUaBVLMmgWR0Cm9rUPxx1gdX2UKGgGaAloD0MIWDz1SIPb57+UhpRSlGgVSzJoFkdApvZHRzBAOnV9lChoBmgJaA9DCI1jJHuEGuG/lIaUUpRoFUsyaBZHQKb4hX7tRel1fZQoaAZoCWgPQwgdAHFXr6Liv5SGlFKUaBVLMmgWR0Cm+B/m1YyPdX2UKGgGaAloD0MI/I9Mh05P5L+UhpRSlGgVSzJoFkdApvfJRhttRHV9lChoBmgJaA9DCJPF/UemQ9m/lIaUUpRoFUsyaBZHQKb3W4hllK91fZQoaAZoCWgPQwhJS+XtCKfPv5SGlFKUaBVLMmgWR0Cm+bdph4MXdX2UKGgGaAloD0MIL4UHza574b+UhpRSlGgVSzJoFkdApvlR9LHuJHV9lChoBmgJaA9DCJxqLcxCO9O/lIaUUpRoFUsyaBZHQKb4+0UoKD11fZQoaAZoCWgPQwjGFoIclDDZv5SGlFKUaBVLMmgWR0Cm+I2Mju8cdX2UKGgGaAloD0MIm3YxzXQv4L+UhpRSlGgVSzJoFkdApvrR11W8y3V9lChoBmgJaA9DCL+1EyUhkea/lIaUUpRoFUsyaBZHQKb6bElVtGd1fZQoaAZoCWgPQwjkoISZtv/iv5SGlFKUaBVLMmgWR0Cm+hWjGkvcdX2UKGgGaAloD0MI/yCSIcfW5L+UhpRSlGgVSzJoFkdApvmn4ubqhXV9lChoBmgJaA9DCKjlB67yBMy/lIaUUpRoFUsyaBZHQKb77W1+iJx1fZQoaAZoCWgPQwjrGi0Heijtv5SGlFKUaBVLMmgWR0Cm+4fo7muDdX2UKGgGaAloD0MIYB4y5UPQ6b+UhpRSlGgVSzJoFkdApvsxR64Ue3V9lChoBmgJaA9DCIidKXRe4+O/lIaUUpRoFUsyaBZHQKb6w2/BWPt1fZQoaAZoCWgPQwijW6/pQUHPv5SGlFKUaBVLMmgWR0Cm/UAlv60qdX2UKGgGaAloD0MITBb3H5mO4b+UhpRSlGgVSzJoFkdApvzaioKlYXV9lChoBmgJaA9DCHMSSl8Iuem/lIaUUpRoFUsyaBZHQKb8hF3IMjN1fZQoaAZoCWgPQwjQmh9/adHmv5SGlFKUaBVLMmgWR0Cm/BdGy5ZsdX2UKGgGaAloD0MIxO47hsd+5r+UhpRSlGgVSzJoFkdApv5gSi/O+3V9lChoBmgJaA9DCHlzuFZ72N6/lIaUUpRoFUsyaBZHQKb9+sA/9pB1fZQoaAZoCWgPQwghPNo4Yi3Yv5SGlFKUaBVLMmgWR0Cm/aP5YYBOdX2UKGgGaAloD0MIym37HvXX17+UhpRSlGgVSzJoFkdApv02UKRdQnV9lChoBmgJaA9DCDzbozfcx+m/lIaUUpRoFUsyaBZHQKcAIcSXdCV1fZQoaAZoCWgPQwiez4B6M2rkv5SGlFKUaBVLMmgWR0Cm/70YTCcgdX2UKGgGaAloD0MIoS3nUlxV5r+UhpRSlGgVSzJoFkdApv9nOhTOxHV9lChoBmgJaA9DCOaxZmSQu+G/lIaUUpRoFUsyaBZHQKb++mDUVi51ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b2869e9c3f29312cc0ba5cbe8edf8b8e18d1594581244fd993a9c6ded43d5ec
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a896278c5379f1514ba6f87c035a89bfec9ddcc78f684a9e52a86fa117329cff
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe6d5cfd550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe6d5d72b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678116066488532779, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbOLWPlMubD1tPRc/bOLWPlMubD1tPRc/bOLWPlMubD1tPRc/bOLWPlMubD1tPRc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADV3HPfuQ1r8X7Ak9iA94vzVkkr9zmy2/J9euP9sv+L4sSZS/Lpm2PnLOyj2AyOa9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABs4tY+Uy5sPW09Fz8shR08OkTMuflvBzxs4tY+Uy5sPW09Fz8shR08OkTMuflvBzxs4tY+Uy5sPW09Fz8shR08OkTMuflvBzxs4tY+Uy5sPW09Fz8shR08OkTMuflvBzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4196962 0.05766137 0.59078103]\n [0.4196962 0.05766137 0.59078103]\n [0.4196962 0.05766137 0.59078103]\n [0.4196962 0.05766137 0.59078103]]", "desired_goal": "[[ 0.09734545 -1.6762995 0.03367242]\n [-0.968987 -1.1436831 -0.6781532 ]\n [ 1.3659409 -0.4847401 -1.158483 ]\n [ 0.35663742 0.09902658 -0.11268711]]", "observation": "[[ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]\n [ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]\n [ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]\n [ 4.1969621e-01 5.7661366e-02 5.9078103e-01 9.6142702e-03\n -3.8960745e-04 8.2664425e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANYu0PWw76D1ynIw+7S3avePDFTwpyk0+Vqqwu8T5wT11UhQ9gHR0vcIKKD1njAk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08815614 0.11339459 0.27463108]\n [-0.10653291 0.00914094 0.20096649]\n [-0.0053914 0.09471467 0.03621145]\n [-0.05968142 0.04102588 0.13432465]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxsGlY86z4L+UhpRSlIwBbJRLMowBdJRHQKbge4tHxz91fZQoaAZoCWgPQwhOl8XE5mPmv5SGlFKUaBVLMmgWR0Cm4Bbf51vEdX2UKGgGaAloD0MIyJi7lpAP7b+UhpRSlGgVSzJoFkdApt/BHww0wnV9lChoBmgJaA9DCBWt3AvMiu+/lIaUUpRoFUsyaBZHQKbfVCngpBp1fZQoaAZoCWgPQwid2hmmtpTxv5SGlFKUaBVLMmgWR0Cm4kzEJjUedX2UKGgGaAloD0MIsyjsougB4b+UhpRSlGgVSzJoFkdApuHoyqMm4XV9lChoBmgJaA9DCOnzUUZcgPC/lIaUUpRoFUsyaBZHQKbhkvFm4Al1fZQoaAZoCWgPQwhSfecXJWjnv5SGlFKUaBVLMmgWR0Cm4SYqPOpsdX2UKGgGaAloD0MINZvHYTB/5L+UhpRSlGgVSzJoFkdApuQrUutfX3V9lChoBmgJaA9DCCWxpNx9DuC/lIaUUpRoFUsyaBZHQKbjxn+Q2dd1fZQoaAZoCWgPQwhl/PuMCwffv5SGlFKUaBVLMmgWR0Cm43CnYQJ5dX2UKGgGaAloD0MIIsZrXtVZ3r+UhpRSlGgVSzJoFkdApuMDvCuU2XV9lChoBmgJaA9DCNkh/mFLj9G/lIaUUpRoFUsyaBZHQKbmGWtU4rB1fZQoaAZoCWgPQwhLyXISSl/fv5SGlFKUaBVLMmgWR0Cm5bTQVsUJdX2UKGgGaAloD0MIaVN1j2yu4L+UhpRSlGgVSzJoFkdApuVe912aD3V9lChoBmgJaA9DCLmMmxpovuK/lIaUUpRoFUsyaBZHQKbk8o1DSgJ1fZQoaAZoCWgPQwiZRpOLMbDev5SGlFKUaBVLMmgWR0Cm5/uUdJardX2UKGgGaAloD0MICf63kh0b4b+UhpRSlGgVSzJoFkdApueWzyBkJHV9lChoBmgJaA9DCOPD7GXbaei/lIaUUpRoFUsyaBZHQKbnQSzPa+N1fZQoaAZoCWgPQwgL68a7I2Plv5SGlFKUaBVLMmgWR0Cm5tRW1c+rdX2UKGgGaAloD0MISwLU1LK15L+UhpRSlGgVSzJoFkdApundFOO803V9lChoBmgJaA9DCKiOVUrP9Oe/lIaUUpRoFUsyaBZHQKbpeKfnOjZ1fZQoaAZoCWgPQwimRX2SO2zWv5SGlFKUaBVLMmgWR0Cm6SK8tf5UdX2UKGgGaAloD0MIyJV6FoTy47+UhpRSlGgVSzJoFkdApui1z4k/r3V9lChoBmgJaA9DCJ3YQ/tYwdy/lIaUUpRoFUsyaBZHQKbrTczqKP51fZQoaAZoCWgPQwiqnWFqSx3Tv5SGlFKUaBVLMmgWR0Cm6uhGx2SudX2UKGgGaAloD0MIXcXiN4WV8b+UhpRSlGgVSzJoFkdApuqRof0VanV9lChoBmgJaA9DCCk8aHbd2+K/lIaUUpRoFUsyaBZHQKbqI9vjwQV1fZQoaAZoCWgPQwj4w89/D17vv5SGlFKUaBVLMmgWR0Cm7GfXXiBHdX2UKGgGaAloD0MIRwVOtoE75L+UhpRSlGgVSzJoFkdApuwCSX+l03V9lChoBmgJaA9DCLitLTwvleS/lIaUUpRoFUsyaBZHQKbrq4xUNrl1fZQoaAZoCWgPQwj67laW6Czhv5SGlFKUaBVLMmgWR0Cm6z3A/LTydX2UKGgGaAloD0MI9ODurN1247+UhpRSlGgVSzJoFkdApu1/hddE9nV9lChoBmgJaA9DCIM1zqYjgNq/lIaUUpRoFUsyaBZHQKbtGelsP8R1fZQoaAZoCWgPQwiESIYcW0/mv5SGlFKUaBVLMmgWR0Cm7MMwUQCkdX2UKGgGaAloD0MImE9WDFcH3b+UhpRSlGgVSzJoFkdApuxVgBtDUnV9lChoBmgJaA9DCJ8e2zLgLM2/lIaUUpRoFUsyaBZHQKbum3G4qgB1fZQoaAZoCWgPQwip+wCkNnHWv5SGlFKUaBVLMmgWR0Cm7jXqJMxodX2UKGgGaAloD0MI8N5RY0LM1L+UhpRSlGgVSzJoFkdApu3fL5h0AHV9lChoBmgJaA9DCLO3lPPF3tm/lIaUUpRoFUsyaBZHQKbtcWSlnAZ1fZQoaAZoCWgPQwiFQgQcQpXfv5SGlFKUaBVLMmgWR0Cm77Ha37UHdX2UKGgGaAloD0MImbfqOlRT2r+UhpRSlGgVSzJoFkdApu9MTQE6k3V9lChoBmgJaA9DCDyh15/E59q/lIaUUpRoFUsyaBZHQKbu9ZSNwR51fZQoaAZoCWgPQwglehnFckviv5SGlFKUaBVLMmgWR0Cm7oe18b71dX2UKGgGaAloD0MI2ozTEFX417+UhpRSlGgVSzJoFkdApvDV5jYqXnV9lChoBmgJaA9DCEzg1t081eO/lIaUUpRoFUsyaBZHQKbwcH0K7Zp1fZQoaAZoCWgPQwiiCn+GN2vav5SGlFKUaBVLMmgWR0Cm8Bn8KohqdX2UKGgGaAloD0MIQ61p3nEK4b+UhpRSlGgVSzJoFkdApu+scuJ1q3V9lChoBmgJaA9DCOCfUiXK3ta/lIaUUpRoFUsyaBZHQKbx7MlkYoB1fZQoaAZoCWgPQwjc8/xpozrfv5SGlFKUaBVLMmgWR0Cm8YdFfAsTdX2UKGgGaAloD0MIwqG3eHhP7r+UhpRSlGgVSzJoFkdApvEwp+c6NnV9lChoBmgJaA9DCKmhDcAGxOO/lIaUUpRoFUsyaBZHQKbwwtWdVed1fZQoaAZoCWgPQwi22O2zyszgv5SGlFKUaBVLMmgWR0Cm8wmmUGFBdX2UKGgGaAloD0MITaJe8GnO5r+UhpRSlGgVSzJoFkdApvKkJa7mMnV9lChoBmgJaA9DCMV1jCsuDuO/lIaUUpRoFUsyaBZHQKbyTXUYsNF1fZQoaAZoCWgPQwhUqG4u/rbTv5SGlFKUaBVLMmgWR0Cm8d+6qbSadX2UKGgGaAloD0MIJqYLsfojzL+UhpRSlGgVSzJoFkdApvQf6Eal13V9lChoBmgJaA9DCHrCEg8oG+G/lIaUUpRoFUsyaBZHQKbzukTHsC11fZQoaAZoCWgPQwj9LmzNVl7dv5SGlFKUaBVLMmgWR0Cm82N9QXQ/dX2UKGgGaAloD0MIdZKtLqcE2b+UhpRSlGgVSzJoFkdApvL1t2s7uHV9lChoBmgJaA9DCONTAIxnUOO/lIaUUpRoFUsyaBZHQKb1SWszVMF1fZQoaAZoCWgPQwgkm6vmOSLlv5SGlFKUaBVLMmgWR0Cm9OPhqCYkdX2UKGgGaAloD0MIQdXo1QCl0r+UhpRSlGgVSzJoFkdApvSNPUKArnV9lChoBmgJaA9DCAddwqG3+Oi/lIaUUpRoFUsyaBZHQKb0H3Zf2K51fZQoaAZoCWgPQwj3IW+5+jHiv5SGlFKUaBVLMmgWR0Cm9lzjm0VrdX2UKGgGaAloD0MIf7+YLVmV6L+UhpRSlGgVSzJoFkdApvX3uiN83XV9lChoBmgJaA9DCJP+XgoPmu6/lIaUUpRoFUsyaBZHQKb1oSGrS3N1fZQoaAZoCWgPQwgotRfRdszgv5SGlFKUaBVLMmgWR0Cm9TNipeeGdX2UKGgGaAloD0MIqtVXVwVq4r+UhpRSlGgVSzJoFkdApvdxRCQcP3V9lChoBmgJaA9DCEXXhR+cz+S/lIaUUpRoFUsyaBZHQKb3C8CgbqB1fZQoaAZoCWgPQwjIz0aum1Luv5SGlFKUaBVLMmgWR0Cm9rUPxx1gdX2UKGgGaAloD0MIWDz1SIPb57+UhpRSlGgVSzJoFkdApvZHRzBAOnV9lChoBmgJaA9DCI1jJHuEGuG/lIaUUpRoFUsyaBZHQKb4hX7tRel1fZQoaAZoCWgPQwgdAHFXr6Liv5SGlFKUaBVLMmgWR0Cm+B/m1YyPdX2UKGgGaAloD0MI/I9Mh05P5L+UhpRSlGgVSzJoFkdApvfJRhttRHV9lChoBmgJaA9DCJPF/UemQ9m/lIaUUpRoFUsyaBZHQKb3W4hllK91fZQoaAZoCWgPQwhJS+XtCKfPv5SGlFKUaBVLMmgWR0Cm+bdph4MXdX2UKGgGaAloD0MIL4UHza574b+UhpRSlGgVSzJoFkdApvlR9LHuJHV9lChoBmgJaA9DCJxqLcxCO9O/lIaUUpRoFUsyaBZHQKb4+0UoKD11fZQoaAZoCWgPQwjGFoIclDDZv5SGlFKUaBVLMmgWR0Cm+I2Mju8cdX2UKGgGaAloD0MIm3YxzXQv4L+UhpRSlGgVSzJoFkdApvrR11W8y3V9lChoBmgJaA9DCL+1EyUhkea/lIaUUpRoFUsyaBZHQKb6bElVtGd1fZQoaAZoCWgPQwjkoISZtv/iv5SGlFKUaBVLMmgWR0Cm+hWjGkvcdX2UKGgGaAloD0MI/yCSIcfW5L+UhpRSlGgVSzJoFkdApvmn4ubqhXV9lChoBmgJaA9DCKjlB67yBMy/lIaUUpRoFUsyaBZHQKb77W1+iJx1fZQoaAZoCWgPQwjrGi0Heijtv5SGlFKUaBVLMmgWR0Cm+4fo7muDdX2UKGgGaAloD0MIYB4y5UPQ6b+UhpRSlGgVSzJoFkdApvsxR64Ue3V9lChoBmgJaA9DCIidKXRe4+O/lIaUUpRoFUsyaBZHQKb6w2/BWPt1fZQoaAZoCWgPQwijW6/pQUHPv5SGlFKUaBVLMmgWR0Cm/UAlv60qdX2UKGgGaAloD0MITBb3H5mO4b+UhpRSlGgVSzJoFkdApvzaioKlYXV9lChoBmgJaA9DCHMSSl8Iuem/lIaUUpRoFUsyaBZHQKb8hF3IMjN1fZQoaAZoCWgPQwjQmh9/adHmv5SGlFKUaBVLMmgWR0Cm/BdGy5ZsdX2UKGgGaAloD0MIxO47hsd+5r+UhpRSlGgVSzJoFkdApv5gSi/O+3V9lChoBmgJaA9DCHlzuFZ72N6/lIaUUpRoFUsyaBZHQKb9+sA/9pB1fZQoaAZoCWgPQwghPNo4Yi3Yv5SGlFKUaBVLMmgWR0Cm/aP5YYBOdX2UKGgGaAloD0MIym37HvXX17+UhpRSlGgVSzJoFkdApv02UKRdQnV9lChoBmgJaA9DCDzbozfcx+m/lIaUUpRoFUsyaBZHQKcAIcSXdCV1fZQoaAZoCWgPQwiez4B6M2rkv5SGlFKUaBVLMmgWR0Cm/70YTCcgdX2UKGgGaAloD0MIoS3nUlxV5r+UhpRSlGgVSzJoFkdApv9nOhTOxHV9lChoBmgJaA9DCOaxZmSQu+G/lIaUUpRoFUsyaBZHQKb++mDUVi51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (293 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.4200060970732011, "std_reward": 0.11253707263504886, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T16:10:14.900988"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ac54cbdcfe8c615b5111d15b844155c77ab02b3791fbf3a0ada427e4c5e6911
|
3 |
+
size 3056
|