|
import numpy as np
|
|
import copy
|
|
|
|
from tqdm.auto import trange
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import *
|
|
from diffusers.models.transformers import Transformer2DModel
|
|
|
|
|
|
original_Transformer2DModel_forward = Transformer2DModel.forward
|
|
|
|
|
|
def hacked_Transformer2DModel_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
timestep: Optional[torch.LongTensor] = None,
|
|
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
|
class_labels: Optional[torch.LongTensor] = None,
|
|
cross_attention_kwargs: Dict[str, Any] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
return_dict: bool = True,
|
|
):
|
|
cross_attention_kwargs = cross_attention_kwargs or {}
|
|
cross_attention_kwargs['hidden_states_original_shape'] = hidden_states.shape
|
|
return original_Transformer2DModel_forward(
|
|
self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, class_labels, cross_attention_kwargs,
|
|
attention_mask, encoder_attention_mask, return_dict)
|
|
|
|
|
|
Transformer2DModel.forward = hacked_Transformer2DModel_forward
|
|
|
|
|
|
@torch.no_grad()
|
|
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
|
"""DPM-Solver++(2M)."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
s_in = x.new_ones([x.shape[0]])
|
|
sigma_fn = lambda t: t.neg().exp()
|
|
t_fn = lambda sigma: sigma.log().neg()
|
|
old_denoised = None
|
|
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
|
if callback is not None:
|
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
|
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
|
h = t_next - t
|
|
if old_denoised is None or sigmas[i + 1] == 0:
|
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
|
else:
|
|
h_last = t - t_fn(sigmas[i - 1])
|
|
r = h_last / h
|
|
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
|
old_denoised = denoised
|
|
return x
|
|
|
|
|
|
class KModel:
|
|
def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012):
|
|
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2
|
|
alphas = 1. - betas
|
|
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
|
|
|
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
|
self.log_sigmas = self.sigmas.log()
|
|
self.sigma_data = 1.0
|
|
self.unet = unet
|
|
return
|
|
|
|
@property
|
|
def sigma_min(self):
|
|
return self.sigmas[0]
|
|
|
|
@property
|
|
def sigma_max(self):
|
|
return self.sigmas[-1]
|
|
|
|
def timestep(self, sigma):
|
|
log_sigma = sigma.log()
|
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
|
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
|
|
|
|
def get_sigmas_karras(self, n, rho=7.):
|
|
ramp = torch.linspace(0, 1, n)
|
|
min_inv_rho = self.sigma_min ** (1 / rho)
|
|
max_inv_rho = self.sigma_max ** (1 / rho)
|
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
|
return torch.cat([sigmas, sigmas.new_zeros([1])])
|
|
|
|
def __call__(self, x, sigma, **extra_args):
|
|
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5
|
|
t = self.timestep(sigma)
|
|
cfg_scale = extra_args['cfg_scale']
|
|
eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0]
|
|
eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0]
|
|
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative)
|
|
return x - noise_pred * sigma[:, None, None, None]
|
|
|
|
|
|
class OmostSelfAttnProcessor:
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs):
|
|
batch_size, sequence_length, _ = hidden_states.shape
|
|
|
|
query = attn.to_q(hidden_states)
|
|
key = attn.to_k(hidden_states)
|
|
value = attn.to_v(hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
hidden_states = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class OmostCrossAttnProcessor:
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs):
|
|
B, C, H, W = hidden_states_original_shape
|
|
|
|
conds = []
|
|
masks = []
|
|
|
|
for m, c in encoder_hidden_states:
|
|
m = torch.nn.functional.interpolate(m[None, None, :, :], (H, W), mode='nearest-exact').flatten().unsqueeze(1).repeat(1, c.size(1))
|
|
conds.append(c)
|
|
masks.append(m)
|
|
|
|
conds = torch.cat(conds, dim=1)
|
|
masks = torch.cat(masks, dim=1)
|
|
|
|
mask_bool = masks > 0.5
|
|
mask_scale = (H * W) / torch.sum(masks, dim=0, keepdim=True)
|
|
|
|
batch_size, sequence_length, _ = conds.shape
|
|
|
|
query = attn.to_q(hidden_states)
|
|
key = attn.to_k(conds)
|
|
value = attn.to_v(conds)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
mask_bool = mask_bool[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1)
|
|
mask_scale = mask_scale[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1)
|
|
|
|
sim = query @ key.transpose(-2, -1) * attn.scale
|
|
sim = sim * mask_scale.to(sim)
|
|
sim.masked_fill_(mask_bool.logical_not(), float("-inf"))
|
|
sim = sim.softmax(dim=-1)
|
|
|
|
h = sim @ value
|
|
h = h.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
|
h = attn.to_out[0](h)
|
|
h = attn.to_out[1](h)
|
|
return h
|
|
|
|
|
|
class StableDiffusionXLOmostPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.k_model = KModel(unet=self.unet)
|
|
|
|
attn_procs = {}
|
|
for name in self.unet.attn_processors.keys():
|
|
if name.endswith("attn2.processor"):
|
|
attn_procs[name] = OmostCrossAttnProcessor()
|
|
else:
|
|
attn_procs[name] = OmostSelfAttnProcessor()
|
|
|
|
self.unet.set_attn_processor(attn_procs)
|
|
return
|
|
|
|
@torch.inference_mode()
|
|
def encode_bag_of_subprompts_greedy(self, prefixes: list[str], suffixes: list[str]):
|
|
device = self.text_encoder.device
|
|
|
|
@torch.inference_mode()
|
|
def greedy_partition(items, max_sum):
|
|
bags = []
|
|
current_bag = []
|
|
current_sum = 0
|
|
|
|
for item in items:
|
|
num = item['length']
|
|
if current_sum + num > max_sum:
|
|
if current_bag:
|
|
bags.append(current_bag)
|
|
current_bag = [item]
|
|
current_sum = num
|
|
else:
|
|
current_bag.append(item)
|
|
current_sum += num
|
|
|
|
if current_bag:
|
|
bags.append(current_bag)
|
|
|
|
return bags
|
|
|
|
@torch.inference_mode()
|
|
def get_77_tokens_in_torch(subprompt_inds, tokenizer):
|
|
|
|
result = [tokenizer.bos_token_id] + subprompt_inds[:75] + [tokenizer.eos_token_id] + [tokenizer.pad_token_id] * 75
|
|
result = result[:77]
|
|
result = torch.tensor([result]).to(device=device, dtype=torch.int64)
|
|
return result
|
|
|
|
@torch.inference_mode()
|
|
def merge_with_prefix(bag):
|
|
merged_ids_t1 = copy.deepcopy(prefix_ids_t1)
|
|
merged_ids_t2 = copy.deepcopy(prefix_ids_t2)
|
|
|
|
for item in bag:
|
|
merged_ids_t1.extend(item['ids_t1'])
|
|
merged_ids_t2.extend(item['ids_t2'])
|
|
|
|
return dict(
|
|
ids_t1=get_77_tokens_in_torch(merged_ids_t1, self.tokenizer),
|
|
ids_t2=get_77_tokens_in_torch(merged_ids_t2, self.tokenizer_2)
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def double_encode(pair_of_inds):
|
|
inds = [pair_of_inds['ids_t1'], pair_of_inds['ids_t2']]
|
|
text_encoders = [self.text_encoder, self.text_encoder_2]
|
|
|
|
pooled_prompt_embeds = None
|
|
prompt_embeds_list = []
|
|
|
|
for text_input_ids, text_encoder in zip(inds, text_encoders):
|
|
prompt_embeds = text_encoder(text_input_ids, output_hidden_states=True)
|
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds.pooler_output
|
|
|
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
return prompt_embeds, pooled_prompt_embeds
|
|
|
|
|
|
|
|
prefix_length = 0
|
|
prefix_ids_t1 = []
|
|
prefix_ids_t2 = []
|
|
|
|
for prefix in prefixes:
|
|
ids_t1 = self.tokenizer(prefix, truncation=False, add_special_tokens=False).input_ids
|
|
ids_t2 = self.tokenizer_2(prefix, truncation=False, add_special_tokens=False).input_ids
|
|
assert len(ids_t1) == len(ids_t2)
|
|
prefix_length += len(ids_t1)
|
|
prefix_ids_t1 += ids_t1
|
|
prefix_ids_t2 += ids_t2
|
|
|
|
|
|
|
|
allowed_suffix_length = 75 - prefix_length
|
|
suffix_targets = []
|
|
|
|
for subprompt in suffixes:
|
|
|
|
|
|
ids_t1 = self.tokenizer(subprompt, truncation=False, add_special_tokens=False).input_ids[:75]
|
|
ids_t2 = self.tokenizer_2(subprompt, truncation=False, add_special_tokens=False).input_ids[:75]
|
|
assert len(ids_t1) == len(ids_t2)
|
|
suffix_targets.append(dict(
|
|
length=len(ids_t1),
|
|
ids_t1=ids_t1,
|
|
ids_t2=ids_t2
|
|
))
|
|
|
|
|
|
|
|
suffix_targets = greedy_partition(suffix_targets, max_sum=allowed_suffix_length)
|
|
targets = [merge_with_prefix(b) for b in suffix_targets]
|
|
|
|
|
|
|
|
conds, poolers = [], []
|
|
|
|
for target in targets:
|
|
cond, pooler = double_encode(target)
|
|
conds.append(cond)
|
|
poolers.append(pooler)
|
|
|
|
conds_merged = torch.concat(conds, dim=1)
|
|
poolers_merged = poolers[0]
|
|
|
|
return dict(cond=conds_merged, pooler=poolers_merged)
|
|
|
|
@torch.inference_mode()
|
|
def all_conds_from_canvas(self, canvas_outputs, negative_prompt):
|
|
mask_all = torch.ones(size=(90, 90), dtype=torch.float32)
|
|
negative_cond, negative_pooler = self.encode_cropped_prompt_77tokens(negative_prompt)
|
|
negative_result = [(mask_all, negative_cond)]
|
|
|
|
positive_result = []
|
|
positive_pooler = None
|
|
|
|
for item in canvas_outputs['bag_of_conditions']:
|
|
current_mask = torch.from_numpy(item['mask']).to(torch.float32)
|
|
current_prefixes = item['prefixes']
|
|
current_suffixes = item['suffixes']
|
|
|
|
current_cond = self.encode_bag_of_subprompts_greedy(prefixes=current_prefixes, suffixes=current_suffixes)
|
|
|
|
if positive_pooler is None:
|
|
positive_pooler = current_cond['pooler']
|
|
|
|
positive_result.append((current_mask, current_cond['cond']))
|
|
|
|
return positive_result, positive_pooler, negative_result, negative_pooler
|
|
|
|
@torch.inference_mode()
|
|
def encode_cropped_prompt_77tokens(self, prompt: str):
|
|
device = self.text_encoder.device
|
|
tokenizers = [self.tokenizer, self.tokenizer_2]
|
|
text_encoders = [self.text_encoder, self.text_encoder_2]
|
|
|
|
pooled_prompt_embeds = None
|
|
prompt_embeds_list = []
|
|
|
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
|
text_input_ids = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds.pooler_output
|
|
|
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
return prompt_embeds, pooled_prompt_embeds
|
|
|
|
@torch.inference_mode()
|
|
def __call__(
|
|
self,
|
|
initial_latent: torch.FloatTensor = None,
|
|
strength: float = 1.0,
|
|
num_inference_steps: int = 25,
|
|
guidance_scale: float = 5.0,
|
|
batch_size: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[dict] = None,
|
|
):
|
|
|
|
device = self.unet.device
|
|
cross_attention_kwargs = cross_attention_kwargs or {}
|
|
|
|
|
|
|
|
sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps / strength))
|
|
sigmas = sigmas[-(num_inference_steps + 1):].to(device)
|
|
|
|
|
|
|
|
_, C, H, W = initial_latent.shape
|
|
noise = randn_tensor((batch_size, C, H, W), generator=generator, device=device, dtype=self.unet.dtype)
|
|
latents = initial_latent.to(noise) + noise * sigmas[0].to(noise)
|
|
|
|
|
|
|
|
height, width = latents.shape[-2:]
|
|
height = height * self.vae_scale_factor
|
|
width = width * self.vae_scale_factor
|
|
|
|
add_time_ids = list((height, width) + (0, 0) + (height, width))
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=self.unet.dtype)
|
|
add_neg_time_ids = add_time_ids.clone()
|
|
|
|
|
|
|
|
latents = latents.to(device)
|
|
add_time_ids = add_time_ids.repeat(batch_size, 1).to(device)
|
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size, 1).to(device)
|
|
prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in prompt_embeds]
|
|
negative_prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in negative_prompt_embeds]
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(batch_size, 1).to(noise)
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1).to(noise)
|
|
|
|
|
|
|
|
sampler_kwargs = dict(
|
|
cfg_scale=guidance_scale,
|
|
positive=dict(
|
|
encoder_hidden_states=prompt_embeds,
|
|
added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids},
|
|
cross_attention_kwargs=cross_attention_kwargs
|
|
),
|
|
negative=dict(
|
|
encoder_hidden_states=negative_prompt_embeds,
|
|
added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids},
|
|
cross_attention_kwargs=cross_attention_kwargs
|
|
)
|
|
)
|
|
|
|
|
|
|
|
results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=results)
|
|
|