|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from contextlib import contextmanager |
|
from shutil import copyfile |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import sentencepiece as spm |
|
|
|
from transformers import AddedToken, PreTrainedTokenizer |
|
from transformers import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
SPIECE_UNDERLINE = "▁" |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} |
|
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"Formzu/bart-base-japanese": ( |
|
"https://huggingface.co/Formzu/bart-base-japanese/resolve/main/sentencepiece.bpe.model" |
|
), |
|
"Formzu/bart-large-japanese": ( |
|
"https://huggingface.co/Formzu/bart-large-japanese/resolve/main/sentencepiece.bpe.model" |
|
), |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"Formzu/bart-base-japanese": 1024, |
|
"Formzu/bart-large-japanese": 1024, |
|
} |
|
|
|
|
|
class BartJapaneseTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a BART tokenizer for Japanese text. |
|
|
|
Adapted from [`RobertaTokenizer`], [`XLNetTokenizer`] and [`MBartTokenizer`]. Based on |
|
[SentencePiece](https://github.com/google/sentencepiece). |
|
|
|
The tokenization method is `<bos> <tokens> <eos>`. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from tokenization_bart_japanese import BartJapaneseTokenizer |
|
|
|
>>> tokenizer = BartJapaneseTokenizer.from_pretrained("Formzu/bart-base-japanese") |
|
>>> example_japanese_phrase = "今日は晴れています。" |
|
>>> expected_label = "天気" |
|
>>> inputs = tokenizer(example_japanese_phrase, return_tensors="pt") |
|
>>> labels = tokenizer(expected_label, return_tensors="pt") |
|
>>> inputs["labels"] = labels["input_ids"] |
|
```""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
prefix_tokens: List[int] = [] |
|
suffix_tokens: List[int] = [] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
cls_token="<s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
mask_token="<mask>", |
|
tokenizer_file=None, |
|
src_lang=None, |
|
tgt_lang=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
additional_special_tokens=None, |
|
**kwargs |
|
): |
|
|
|
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token |
|
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
tokenizer_file=None, |
|
src_lang=src_lang, |
|
tgt_lang=tgt_lang, |
|
additional_special_tokens=additional_special_tokens, |
|
sp_model_kwargs=self.sp_model_kwargs, |
|
**kwargs, |
|
) |
|
|
|
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.Load(str(vocab_file)) |
|
self.vocab_file = vocab_file |
|
try: |
|
from zenhan import h2z |
|
except ModuleNotFoundError as error: |
|
raise error.__class__( |
|
"You need to install zenhan to use BartJapaneseTokenizer." |
|
"See https://pypi.org/project/zenhan/ for installation." |
|
) |
|
try: |
|
from pyknp import Juman |
|
except ModuleNotFoundError as error: |
|
raise error.__class__( |
|
"You need to install pyknp to use BartJapaneseTokenizer." |
|
"See https://pypi.org/project/pyknp/ for installation." |
|
) |
|
|
|
self.h2z = h2z |
|
self.jumanpp = Juman() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} |
|
|
|
|
|
self.fairseq_offset = 1 |
|
|
|
self.sp_model_size = len(self.sp_model) |
|
|
|
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset |
|
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} |
|
|
|
self.set_special_tokens() |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto() |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
|
|
|
|
if not hasattr(self, "sp_model_kwargs"): |
|
self.sp_model_kwargs = {} |
|
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.sp_model) + self.fairseq_offset + 1 |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
prefix_ones = [1] * len(self.prefix_tokens) |
|
suffix_ones = [1] * len(self.suffix_tokens) |
|
if token_ids_1 is None: |
|
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones |
|
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A Japanese BART sequence has the following format, where `X` represents the sequence: |
|
|
|
- `input_ids` (for encoder) `[bos] X [eos]` |
|
- `decoder_input_ids`: (for decoder) `[bos] X [eos]` |
|
|
|
Pairs of sequences are not the expected use case, but they will be handled without a separator. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return self.prefix_tokens + token_ids_0 + self.suffix_tokens |
|
|
|
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. Japanese BART does not |
|
make use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
|
|
""" |
|
|
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] |
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
text = text |
|
text = self.h2z(text) |
|
text = self.jumanpp.analysis(text) |
|
text = ' '.join([mrph.midasi for mrph in text.mrph_list()]) |
|
return self.sp_model.encode(text, out_type=str) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
if token in self.fairseq_tokens_to_ids: |
|
return self.fairseq_tokens_to_ids[token] |
|
spm_id = self.sp_model.PieceToId(token) |
|
|
|
|
|
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
if index in self.fairseq_ids_to_tokens: |
|
return self.fairseq_ids_to_tokens[index] |
|
return self.sp_model.IdToPiece(index - self.fairseq_offset) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" |
|
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|
|
def set_special_tokens(self) -> None: |
|
"""Set prefix=[bos], suffix=[eos].""" |
|
self.prefix_tokens = [self.bos_token_id] |
|
self.suffix_tokens = [self.eos_token_id] |
|
self.add_tokens(self.all_special_tokens_extended, special_tokens=True) |
|
|