Edit model card

pegasus-samsum

This model is a fine-tuned version of google/pegasus-cnn_dailymail on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0105

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
10.6079 0.0109 10 10.7159
10.5191 0.0217 20 10.6397
10.5539 0.0326 30 10.5210
10.5117 0.0434 40 10.3669
10.3111 0.0543 50 10.1941
10.2 0.0652 60 10.0230
10.1121 0.0760 70 9.8584
10.0677 0.0869 80 9.7129
9.7897 0.0977 90 9.5781
9.744 0.1086 100 9.4538
9.533 0.1195 110 9.3431
9.5248 0.1303 120 9.2552
9.3331 0.1412 130 9.1575
9.2551 0.1520 140 9.0751
9.2382 0.1629 150 8.9993
9.1323 0.1738 160 8.9287
9.0574 0.1846 170 8.8628
9.0137 0.1955 180 8.7964
8.9097 0.2064 190 8.7340
8.8268 0.2172 200 8.6765
8.7116 0.2281 210 8.6173
8.7483 0.2389 220 8.5521
8.6252 0.2498 230 8.4884
8.5844 0.2607 240 8.4275
8.4614 0.2715 250 8.3626
8.4375 0.2824 260 8.2901
8.445 0.2932 270 8.2102
8.2966 0.3041 280 8.1135
8.0934 0.3150 290 8.0113
8.1551 0.3258 300 7.8961
8.0542 0.3367 310 7.7751
8.0183 0.3475 320 7.6504
7.9352 0.3584 330 7.5371
7.7615 0.3693 340 7.4084
7.6484 0.3801 350 7.2715
7.5845 0.3910 360 7.1340
7.4799 0.4018 370 7.0563
7.3388 0.4127 380 6.9495
7.1078 0.4236 390 6.8582
7.0819 0.4344 400 6.7707
7.0465 0.4453 410 6.6897
6.9038 0.4561 420 6.6184
6.9359 0.4670 430 6.5533
6.8038 0.4779 440 6.4962
6.8648 0.4887 450 6.4452
6.7589 0.4996 460 6.3966
6.6804 0.5105 470 6.3588
6.5603 0.5213 480 6.3247
6.6002 0.5322 490 6.2937
6.59 0.5430 500 6.2665
6.5103 0.5539 510 6.2434
6.4911 0.5648 520 6.2210
6.4606 0.5756 530 6.2054
6.5193 0.5865 540 6.1870
6.4794 0.5973 550 6.1724
6.4579 0.6082 560 6.1598
6.3855 0.6191 570 6.1482
6.3071 0.6299 580 6.1367
6.4043 0.6408 590 6.1279
6.354 0.6516 600 6.1188
6.4038 0.6625 610 6.1114
6.3475 0.6734 620 6.1008
6.257 0.6842 630 6.0958
6.4359 0.6951 640 6.0872
6.2238 0.7059 650 6.0820
6.3904 0.7168 660 6.0754
6.2488 0.7277 670 6.0706
6.2648 0.7385 680 6.0644
6.303 0.7494 690 6.0601
6.3133 0.7602 700 6.0553
6.3229 0.7711 710 6.0516
6.3165 0.7820 720 6.0469
6.3353 0.7928 730 6.0438
6.2581 0.8037 740 6.0391
6.2688 0.8146 750 6.0361
6.2193 0.8254 760 6.0342
6.2247 0.8363 770 6.0305
6.1711 0.8471 780 6.0284
6.3126 0.8580 790 6.0259
6.3182 0.8689 800 6.0239
6.2298 0.8797 810 6.0214
6.287 0.8906 820 6.0198
6.2472 0.9014 830 6.0181
6.205 0.9123 840 6.0165
6.2359 0.9232 850 6.0147
6.3013 0.9340 860 6.0135
6.2035 0.9449 870 6.0129
6.2529 0.9557 880 6.0122
6.2043 0.9666 890 6.0114
6.2785 0.9775 900 6.0110
6.3018 0.9883 910 6.0106
6.1616 0.9992 920 6.0105

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
571M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FouadKayali/pegasus-samsum

Finetuned
(161)
this model

Dataset used to train FouadKayali/pegasus-samsum